Câu hỏi:

07/10/2025 8 Lưu

Cho hai biến cố \(A,\,B\) với \(P\left( B \right) = 0,8;P\left( {A|B} \right) = 0,5\). Tính \[P\left( {AB} \right)\].

A. \(\frac{3}{7}\).           
B. \(0,4\).                      
C. \(0,8\).                             
D. \(0,5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Ta có \(P\left( {AB} \right) = P\left( {A|B} \right)P\left( B \right) = 0,5.0,8 = 0,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) tổng số sản phẩm của cả nhà máy nên xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.

b) Đúng. Gọi A là biến cố “Chọn được sản phẩm từ phân xưởng thứ nhất”,

\(\overline A \) là biến cố “Chọn được sản phẩm từ phân xưởng thứ hai”.

B là biến cố “Chọn được sản phẩm là phế phẩm”.

Khi đó: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\);

\(P\left( {B\mid A} \right) = 0,16;P\left( {\overline B \mid A} \right) = 0,84;P\left( {B\mid \overline A } \right) = 0,2\).

Áp dụng công thức tính xác suất tính xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)\)

\( = 0,6.0,16 + 0,4.0,2 = 0,176\).

Vậy xác suất lấy được phế phẩm là 0,176.

c) Đúng. Chọn được phế phẩm, biến cố phế phẩm đó do phân xưởng thứ nhất sản xuất là \(A\mid B\), áp dụng công thức Bayes, ta được:

\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,16}}{{0,176}} = \frac{6}{{11}} \approx 0,55\).

d) Sai. Khi lấy được sản phẩm tốt, để so sánh khả năng sản phẩm thuộc phân xưởng, ta tính xác suất để sản phẩm tốt được chọn ấy thuộc phân xưởng thứ nhất

Từ ý a) suy ra \(P\left( {\overline B } \right) = 1 - 0,176 = 0,824\).

Theo công thức Bayes, ta có: \(P\left( {A\mid \overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B \mid A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,6.0,84}}{{0,824}} \approx 0,61\).

Vậy khả năng sản phẩm tốt được chọn từ phân xưởng thứ nhất cao hơn.

Câu 2

A. \(\frac{7}{{13}}\).      
B. \(\frac{6}{{13}}\).    
C. \(\frac{4}{{13}}\).           
D. \(\frac{9}{{13}}\).

Lời giải

Chọn A

Theo công thức Bayes, ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].

Câu 3

A. \(0,25\).                      
B. \(0,65\).                    
C. \(0,55\).                           
D. \(0,5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).                      
B. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
C. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).                       
D. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP