Câu hỏi:

07/10/2025 74 Lưu

Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó.

Xét các biến cố:

A: “Tổng số chấm trên hai xúc xắc bằng 7”;

B: “Xúc xắc thứ nhất xuất hiện mặt 1 chấm”.

Tính \(P\left( {\left. {A\,} \right|B} \right)\).

A. \(6\).                           
B. \(36\).                       
C. \(\frac{1}{{36}}\).           
D. \(\frac{1}{6}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Không gian mẫu có số phần tử là 36.

Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 7, biết rằng xúc xắc thứ nhất xuất hiện mặt 1 chấm, là xác suất có điều kiện \(P\left( {\left. {A\,} \right|B} \right)\). Biến cố \(A \cap B\) chỉ có 1 kết quả thuận lợi là xúc xắc thứ nhất xuất hiện mặt 1 chấm và xúc xắc thứ hai xuất hiện mặt 6 chấm nên \(P\left( {A \cap B} \right) = \frac{1}{{36}}.\) Có 6 khả năng xảy ra khi xúc xắc thứ nhất xuất hiện mặt 1 chấm nên \(P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\).

Suy ra: \(P\left( {\left. {A\,} \right|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Người đó là trẻ em”;

\(B\) là biến cố “Người đó thích bộ phim”;

\(C\) là biến cố “Người đó xem tiếp phần 2 bộ phim”.

Xét người đi xem là trẻ em có \(P\left( A \right) = 0,7\).

Suy ra \(P\left( {BC} \right) = 50\%  = 0,5\), \(P\left( {B\overline C } \right) = 30\%  = 0,3\), \[P\left( {\overline B \overline C } \right) = 20\%  = 0,2\], \[P\left( {\overline B C} \right) = 0\].

Xét người đi xem là người lớn có \(P\left( {\overline A } \right) = 0,3\).

\(P\left( {BC} \right) = 20\%  = 0,2\), \(P\left( {B\overline C } \right) = 10\%  = 0,1\), \[P\left( {\overline B \overline C } \right) = 70\%  = 0,7\], \[P\left( {\overline B C} \right) = 0\].

a) Sai. Ta có \(P\left( {B\left| A \right.} \right) = 0,5 + 0,3 = 0,8\).

b) Đúng. Ta có \(\overline C  = \overline C AB \cup \overline C A\overline B  \cup \overline C \overline A B \cup \overline C \overline A \overline B \).

\(P\left( {\overline C } \right) = P\left( {\overline C AB} \right) + P\left( {\overline C A\overline B } \right) + P\left( {\overline C \overline A B} \right) + P\left( {\overline C \overline A \overline B } \right)\)

\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,2 + 0,3 \cdot 0,1 + 0,3 \cdot 0,7 = 0,59\).

c) Đúng. \(P\left( C \right) = 1 - P\left( {\overline C } \right) = 0,41\).

\(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}}\).

\(P\left( {AC} \right) = P\left( {AC\overline B } \right) + P\left( {ACB} \right) = 0,7 \cdot 0 + 0,7 \cdot 0,5 = 0,35\).

Suy ra \(P\left( {A\left| C \right.} \right) = \frac{{P\left( {AC} \right)}}{{P\left( C \right)}} = \frac{{0,35}}{{0,41}} \approx 0,854 > 0,85\).

d) Đúng. \[P\left( {\overline C \left| B \right.} \right) = \frac{{P\left( {\overline C B} \right)}}{{P\left( B \right)}}\].

\(P\left( {\overline C B} \right) = P\left( {\overline C BA} \right) + P\left( {\overline C B\overline A } \right) = 0,3 \cdot 0,7 + 0,1 \cdot 0,3 = 0,24\).

\(P\left( B \right) = P\left( {BA\overline C } \right) + P\left( {BAC} \right) + P\left( {B\overline A C} \right) + P\left( {B\overline A \overline C } \right)\)

\( = 0,7 \cdot 0,3 + 0,7 \cdot 0,5 + 0,3 \cdot 0,2 + 0,3 \cdot 0,1 = 0,65\).

Suy ra \[P\left( {\overline C \left| B \right.} \right) = \frac{{0,24}}{{0,65}} \approx 0,37\].

Lời giải

Gọi \[A\] là biến cố “ Chọn nhân viên có trình độ đại học” .

Gọi \[B\] là biến cố “ Chọn nhân viên bị tinh giản biên chế thông qua phỏng vấn” .

Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \] nên \[P\left( A \right) = 0,65 \Rightarrow P\left( {\overline A } \right) = 0,35\].

Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \] nên \[P\left( {B|A} \right) = 0,1\] và \[P\left( {B|\overline A } \right) = 0,15\].

Chọn một nhân viên bất kỳ đã bị tinh giản thì xác suất để người này có trình độ đại học là \[P\left( {A|B} \right).\]

Theo công thức ta có: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,65.0,1}}{{0,65.0,1 + 0,35.0,15}} = 0,55\].

Đáp án: 0,55.

Câu 3

A. \(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).                      
B. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
C. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).                       
D. \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{7}{{13}}\).      
B. \(\frac{6}{{13}}\).    
C. \(\frac{4}{{13}}\).           
D. \(\frac{9}{{13}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP