Một lạng (0,1 kg) thịt bò chứa \(26\,\,{\rm{g}}\) protein, một lạng (0,1 kg) cá chứa \(22\,\,{\rm{g}}\) protein. Bác An định chỉ bổ sung \(70\,\,{\rm{g}}\) protein từ thịt bò và thịt cá trong một ngày. Gọi \(x,\,\,y\) lần lượt là số lạng thịt bò, số lạng thịt cá mà bác An ăn trong một ngày. Phương trình bậc nhất hai ẩn \(x,\,\,y\) biểu diễn nhu cầu bổ sung protein của bác An là
Quảng cáo
Trả lời:
Chọn D
Gọi \(x,y\) lần lượt là số lạng thịt bò, số lạng thịt cá mà bác An ăn trong một ngày.
Do một lạng (0,1 kg) thịt bò chứa \(26\,\,{\rm{g}}\) protein, một lạng (0,1 kg) cá chứa \(22\,\,{\rm{g}}\) protein.
Và bác An định chỉ bổ sung \(70\,\,{\rm{g}}\) protein từ thịt bò và thịt cá trong một ngày.
Do đó, phương trình bậc nhất hai ẩn \(x,\,\,y\) biểu diễn nhu cầu bổ sung protein của bác An là \(26x + 22y = 70\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\). (1)
Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\). (2)
Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).
Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a = - 30\\b = 3630\end{array} \right.\).
Ta có hàm số có dạng \(y = - 30x + 3630\).
Thay \(x = 50^\circ {\rm{C}}\) vào \(y = - 30x + 3630\) suy ra \(y = - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).
Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.
Đáp án: 2130.
Lời giải
a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b = - 1\,;\,\,c = m + 1\)(\(m\) là tham số).
b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).
Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).
Từ đó \(5 - y = 3\) nên \(y = 2\).
Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)
c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)
Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)
d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì
\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.