Cho hệ phương trình \(\left\{ \begin{array}{l}x + 2 + \frac{2}{{\sqrt y - 3}} = 9\\2x + 4 - \frac{1}{{\sqrt y - 3}} = 8\end{array} \right.\) (I)
a) Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đặt \(\frac{1}{{\sqrt y - 3}} = a\). Hệ phương trình (I) trở thành: O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II)
c) Giải hệ phương trình (II) ta được \(x = 3\,;\,\,a = 2.\)
d) Hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{7}{2}} \right)\).
Cho hệ phương trình \(\left\{ \begin{array}{l}x + 2 + \frac{2}{{\sqrt y - 3}} = 9\\2x + 4 - \frac{1}{{\sqrt y - 3}} = 8\end{array} \right.\) (I)
a) Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đặt \(\frac{1}{{\sqrt y - 3}} = a\). Hệ phương trình (I) trở thành: O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II)
c) Giải hệ phương trình (II) ta được \(x = 3\,;\,\,a = 2.\)
d) Hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{7}{2}} \right)\).
Quảng cáo
Trả lời:
a) Đúng. Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đúng. Đặt \(\frac{1}{{\sqrt y - 3}} = a\). Hệ phương trình (I) trở thành:O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II).
c) Đúng. Nhân hai vế của phương trình thứ hai của hệ (II) với 2, ta được \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\4(x + 2) - 2a = 16\end{array} \right..\)
Cộng vế theo vế hai phương trình của hệ mới, ta được: \(5\left( {x + 2} \right) = 25\), suy ra \(x + 2 = 5\) nên \(x = 3.\)
Thế vào phương trình thứ nhất của hệ mới, ta có: \(\left( {3 + 2} \right) + 2a = 9\) nên \(a = 2.\)
d) Sai. Khi đó \(\frac{1}{{\sqrt y - 3}} = 2\) hay \(\sqrt y - 3 = \frac{1}{2}\) nên \(\sqrt y - 3 = \frac{1}{2}\), suy ra \(y = \frac{{49}}{4}.\)
Vậy hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{{49}}{4}} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\). (1)
Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\). (2)
Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).
Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a = - 30\\b = 3630\end{array} \right.\).
Ta có hàm số có dạng \(y = - 30x + 3630\).
Thay \(x = 50^\circ {\rm{C}}\) vào \(y = - 30x + 3630\) suy ra \(y = - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).
Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.
Đáp án: 2130.
Lời giải
a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b = - 1\,;\,\,c = m + 1\)(\(m\) là tham số).
b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).
Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).
Từ đó \(5 - y = 3\) nên \(y = 2\).
Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)
c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)
Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)
d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì
\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.