Câu hỏi:

08/10/2025 31 Lưu

Trên một cánh đồng, người ta cấy 60 ha lúa giống mới và 40 ha lúa giống cũ, thu hoạch được tất cả 660 tấn thóc. Biết rằng 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn. Gọi năng suất lúa giống mới và lúa giống cũ trên 1 ha lần lượt là \(x,\,\,y\) (đơn vị: tấn/ha).

a) Điều kiện \(x \in \mathbb{N}*,\,\,y \in \mathbb{N}*.\)

b) Tổng sản lượng thóc thu hoạch theo \(x,\,\,y\) là \(60x + 40y\) (tấn).

c) Phương trình \(3x - 4y = 3\) thể hiện 3 ha trồng lúa mới thu hoạch được ít hơn 4 ha trồng lúa cũ là 3 tấn.

d) Năng suất lúa mới trên 1 ha là 5 tấn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Gọi \(x,\,\,y\) (tấn/ha) lần lượt là năng suất lúa giống mới và năng suất lúa giống cũ trên 1 ha \(\left( {x \in \mathbb{N}*,\,\,y \in \mathbb{N}*} \right).\)

b) Đúng. Số tấn thóc khi cấy 60 ha lúa giống mới là \[60x\] (tấn thóc).

Số tấn thóc khi cấy 40 ha lúa giống cũ là \[40y\] (tấn thóc).

Tổng sản lượng thóc thu hoạch theo \(x,\,\,y\) là \(60x + 40y\) (tấn).

c) Sai. Với 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn nên ta có \[4y--3x = 3\] hay \[--3x + 4y = 3.\] (1)

d) Sai. Trên một cánh đồng, người ta thu hoạch được tất cả 660 tấn thóc nên

\[60x + 40y = 660\] hay \[3x + 2y = 33.\] (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l} - 3x + 4y = 3\\3x + 2y = 33\end{array} \right.\).

Cộng từng vế hai phương trình của hệ mới, ta được \[6y = 36.\] Suy ra \[y = 6\] (thỏa mãn).

Thay \[y = 6\] vào phương trình thứ nhất, ta được \[3x + 2 \cdot 6 = 33.\] Do đó \[x = 7\] (thỏa mãn).

Vậy năng suất lúa giống mới trên 1 ha bằng 7 ha.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\).                        (1)

Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\).      (2)

Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).

Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a =  - 30\\b = 3630\end{array} \right.\).

Ta có hàm số có dạng \(y =  - 30x + 3630\).

Thay \(x = 50^\circ {\rm{C}}\) vào \(y =  - 30x + 3630\) suy ra \(y =  - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).

Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.

Đáp án: 2130.

Lời giải

a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b =  - 1\,;\,\,c = m + 1\)(\(m\) là tham số).

b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).

Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).

Từ đó \(5 - y = 3\) nên \(y = 2\).

Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)

c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)

Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)

d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì

\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP