Trên một cánh đồng, người ta cấy 60 ha lúa giống mới và 40 ha lúa giống cũ, thu hoạch được tất cả 660 tấn thóc. Biết rằng 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn. Gọi năng suất lúa giống mới và lúa giống cũ trên 1 ha lần lượt là \(x,\,\,y\) (đơn vị: tấn/ha).
a) Điều kiện \(x \in \mathbb{N}*,\,\,y \in \mathbb{N}*.\)
b) Tổng sản lượng thóc thu hoạch theo \(x,\,\,y\) là \(60x + 40y\) (tấn).
c) Phương trình \(3x - 4y = 3\) thể hiện 3 ha trồng lúa mới thu hoạch được ít hơn 4 ha trồng lúa cũ là 3 tấn.
d) Năng suất lúa mới trên 1 ha là 5 tấn.
Trên một cánh đồng, người ta cấy 60 ha lúa giống mới và 40 ha lúa giống cũ, thu hoạch được tất cả 660 tấn thóc. Biết rằng 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn. Gọi năng suất lúa giống mới và lúa giống cũ trên 1 ha lần lượt là \(x,\,\,y\) (đơn vị: tấn/ha).
a) Điều kiện \(x \in \mathbb{N}*,\,\,y \in \mathbb{N}*.\)
b) Tổng sản lượng thóc thu hoạch theo \(x,\,\,y\) là \(60x + 40y\) (tấn).
c) Phương trình \(3x - 4y = 3\) thể hiện 3 ha trồng lúa mới thu hoạch được ít hơn 4 ha trồng lúa cũ là 3 tấn.
d) Năng suất lúa mới trên 1 ha là 5 tấn.
Quảng cáo
Trả lời:

a) Đúng. Gọi \(x,\,\,y\) (tấn/ha) lần lượt là năng suất lúa giống mới và năng suất lúa giống cũ trên 1 ha \(\left( {x \in \mathbb{N}*,\,\,y \in \mathbb{N}*} \right).\)
b) Đúng. Số tấn thóc khi cấy 60 ha lúa giống mới là \[60x\] (tấn thóc).
Số tấn thóc khi cấy 40 ha lúa giống cũ là \[40y\] (tấn thóc).
Tổng sản lượng thóc thu hoạch theo \(x,\,\,y\) là \(60x + 40y\) (tấn).
c) Sai. Với 3 ha trồng lúa giống mới thu hoạch được ít hơn 4 ha trồng lúa giống cũ là 3 tấn nên ta có \[4y--3x = 3\] hay \[--3x + 4y = 3.\] (1)
d) Sai. Trên một cánh đồng, người ta thu hoạch được tất cả 660 tấn thóc nên
\[60x + 40y = 660\] hay \[3x + 2y = 33.\] (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l} - 3x + 4y = 3\\3x + 2y = 33\end{array} \right.\).
Cộng từng vế hai phương trình của hệ mới, ta được \[6y = 36.\] Suy ra \[y = 6\] (thỏa mãn).
Thay \[y = 6\] vào phương trình thứ nhất, ta được \[3x + 2 \cdot 6 = 33.\] Do đó \[x = 7\] (thỏa mãn).
Vậy năng suất lúa giống mới trên 1 ha bằng 7 ha.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (giờ) là thời gian người thứ nhất hoàn thành xong công việc một mình;
\(y\) (giờ) là thời gian người thứ hai hoàn thành xong công việc một mình.
a) Sai. Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên một người không thể hoàn thành công việc sau 1 giờ.
b) Sai. Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên thời gian người thứ nhất làm một mình hoàn thành công việc nhiều hơn thời gian người thứ hai làm một mình hoàn thành công việc.
c) Đúng. Trong 1 giờ người thứ nhất làm được \[\frac{1}{x}\] (công việc).
Trong 1 giờ người thứ hai làm được \[\frac{1}{y}\] (công việc) \(\left( {x,\,\,y > 0} \right)\).
Đổi: 1 giờ 12 phút \[ = \frac{5}{6}\] giờ.
Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên \[\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\]. (1)
Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên \[\frac{1}{x} = \frac{3}{{2y}}.\] (2)
Từ (1) và (2) ta có hệ phương trình \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{x} = \frac{3}{{2y}}\end{array} \right.\].
Thay phương trình thứ hai vào phương trình thứ nhất, ta được
\[\frac{3}{{2y}} + \frac{1}{y} = \frac{5}{6}\]
\[\frac{5}{{2y}} = \frac{5}{6}\]
\[\frac{1}{y} = \frac{1}{3}\]
\(y = 3\) (TMĐK)
Vậy thời gian người thứ hai hoàn thành công việc nếu làm một mình là 3 giờ.
d) Sai. Thay \(y = 3\) thay vào \[\frac{1}{x} = \frac{3}{{2y}}\], ta có: \[\frac{1}{x} = \frac{3}{{2 \cdot 3}} = \frac{1}{2}\] nên \(x = 2\) (TMĐK).
Do đó, nếu làm một mình thì trong 1 giờ người thứ nhất làm được \(\frac{1}{2}\) công việc.
Lời giải
Ta có \( - 5x + 2y = 7\) hay \(2y = 5x + 7\).
Khi đó \(y = \frac{{5x + 7}}{2} = 2x + \frac{{x + 7}}{2}.\)
Đặt \(t = \frac{{x + 7}}{2}\) nên \(x = 2t - 7\).
Suy ra \(y = 2\left( {2t - 7} \right) + t\) nên \(y = 5t - 14\,\,\left( {t \in \mathbb{Z}} \right)\).
Nên nghiệm nguyên của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t - 7}\\{y = 5t - 14}\end{array}} \right.\)\(\left( {t \in \mathbb{Z}} \right)\).
Vì \[x,{\rm{ }}y\] nguyên âm nên \(\left\{ {\begin{array}{*{20}{c}}{2t - 7 < 0}\\{5t - 14 < 0}\end{array}} \right.\)O10-2024-GV154O10-2024-GV147 nên \(\left\{ {\begin{array}{*{20}{c}}{t < \frac{7}{2}}\\{t < \frac{{14}}{5}}\end{array}} \right.\) suy ra \(t\)\( < \frac{{14}}{5}\).
Vì nghiệm nguyên âm lớn nhất, mà \[t\] nguyên nên \(t = 2\)
Vậy \(x = - 3\,;\,\,y = - 4.\)
Đáp án: −7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\left\{ \begin{array}{l}x \in \mathbb{R}\\y = - 4\end{array} \right.\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.