Câu hỏi:

08/10/2025 25 Lưu

Ba xe ô tô chở 118 tấn hàng tổng cộng hết 50 chuyến. Số chuyến xe thứ nhất chở gấp rưỡi số chuyến xe thứ hai. Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ hai chở 2,5 tấn, xe thứ ba chở 3 tấn.

a) Ô tô thứ nhất chở ít chuyến hơn ô tô thứ hai.

b) Mỗi chuyến, ô tô thứ hai chở được ít hàng nhất.

c) Tổng số hàng (tấn) ô tô thứ ba chở bằng \(\frac{5}{8}\) tổng số hàng ô tô thứ nhất chở.

d) Nếu ô tô thứ ba chở hộ số hàng (tấn) mà ô tô thứ hai chở trong 2 chuyến thì số hàng hai ô tô chở được bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x,{\rm{ }}y\] lần lượt là số chuyến của xe thứ hai, thứ ba \[\left( {x,\,\,y \in \mathbb{N}*;\,\,x,{\rm{ }}y < 500} \right)\].

a) Sai. Số chuyến xe thứ nhất chở gấp rưỡi số chuyến xe thứ hai nên ô tô thứ nhất chở được nhiều chuyến hơn ô tô thứ hai.

b) Đúng. Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ hai chở 2,5 tấn, xe thứ ba chở 3 tấn.

Do đó, mỗi chuyến ô tô thứ nhất chở được ít hàng nhất.

c) Sai. Số chuyến xe thứ nhất chở được là \[1,5x\] (chuyến).

Ba xe ô tô chở tổng cộng 50 chuyến nên \[x + 1,5x + y = 50\] hay \[2,5x + y = 50\].            (1)

Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ 2 chở 2,5 tấn, xe thứ 3 chở 3 tấn mà ba xe chở tổng cộng 118 tấn hàng nên \[2 \cdot 1,5x + 2,5x + 3y = 118\] hay \[5,5x + 3y = 118.\]  (2)

Từ (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}2,5x + y = 50\\5,5x + 3y = 118\end{array} \right.\].

Giải hệ phương trình ta được \[\left\{ \begin{array}{l}x = 16\\y = 10\end{array} \right.\].

Khi đó, số chuyến xe thứ nhất chở được là \[1,5 \cdot 16 = 24\] (chuyến).

Số chuyến xe thứ ba chở được là 10 chuyến.

Vậy tổng số hàng (tấn) ô tô thứ ba chở bằng \(\frac{{10}}{{24}} = \frac{5}{{12}}\) tổng số hàng ô tô thứ nhất chở.

d) Sai. Nếu ô tô thứ ba chở hộ số hàng (tấn) mà ô tô thứ hai chở trong 2 chuyến. Khi đó

Số hàng ô tô thứ ba chở được là: \[10 + 2 \cdot 2,5 = 15\] (tấn)

Số hàng ô tô thứ hai chở được là: \[16 - 2 \cdot 2,5 = 11\] (tấn)

Vậy nếu ô tô thứ ba chở hộ số hàng (tấn) mà ô tô thứ hai chở trong 2 chuyến thì số hàng ô tô thứ ba chở được nhiều hơn ô tô thứ hai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\).                        (1)

Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\).      (2)

Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).

Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a =  - 30\\b = 3630\end{array} \right.\).

Ta có hàm số có dạng \(y =  - 30x + 3630\).

Thay \(x = 50^\circ {\rm{C}}\) vào \(y =  - 30x + 3630\) suy ra \(y =  - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).

Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.

Đáp án: 2130.

Lời giải

a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b =  - 1\,;\,\,c = m + 1\)(\(m\) là tham số).

b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).

Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).

Từ đó \(5 - y = 3\) nên \(y = 2\).

Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)

c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)

Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)

d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì

\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP