Câu hỏi:

08/10/2025 35 Lưu

Cho hệ phương trình \(\left\{ \begin{array}{l}x + y = 6\\{x^2} + {y^2} = 20\end{array} \right.\) biết hệ có hai nghiệm \(\left( {x\,;\,\,y} \right)\) trong đó có một nghiệm là \(\left( {2\,;\,\,4} \right).\) Tính tổng \(3x + 2y\) nếu \(x > y\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề bài, hệ phương trình có hai nghiệm \(\left( {x\,;\,\,y} \right)\) trong đó có \(1\) nghiệm là \(\left( {2\,;\,\,4} \right)\).

Suy ra, nghiệm còn lại là \(\left( {4\,;\,\,2} \right)\).

Vì \(x > y\) nên \(x = 4;y = 2\). Vậy \(3x + 2y = 3.4 + 2.2 = 16\).

Đáp án: 16.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\).                        (1)

Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\).      (2)

Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).

Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a =  - 30\\b = 3630\end{array} \right.\).

Ta có hàm số có dạng \(y =  - 30x + 3630\).

Thay \(x = 50^\circ {\rm{C}}\) vào \(y =  - 30x + 3630\) suy ra \(y =  - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).

Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.

Đáp án: 2130.

Lời giải

Vì số nguyên tử của P và O ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình \[\left\{ \begin{array}{l}4 = 2y\\2x = 5y\end{array} \right.\] nên \[\left\{ \begin{array}{l}y = 2{\rm{ }}\\x = 5\end{array} \right.\].

Đáp án: 5.