Hai vòi nước cùng chảy vào một bể thì bể sẽ đầy trong \[4\] giờ \(48\) phút. Người ta cho vòi I
chảy trong \[4\] giờ rồi khóa vòi thứ nhất, vòi thứ hai tiếp tục chảy trong \(2\) giờ thì được
(\frac{2}{3}\) bể. Thời gian vòi I chảy một mình đầy bể là bao nhiêu?
Hai vòi nước cùng chảy vào một bể thì bể sẽ đầy trong \[4\] giờ \(48\) phút. Người ta cho vòi I
chảy trong \[4\] giờ rồi khóa vòi thứ nhất, vòi thứ hai tiếp tục chảy trong \(2\) giờ thì được
(\frac{2}{3}\) bể. Thời gian vòi I chảy một mình đầy bể là bao nhiêu?
Quảng cáo
Trả lời:

Đổi \[4\] giờ \(48\) phút \( = \frac{{24}}{5}\) giờ.
Gọi thời gian vòi I chảy một mình đầy bể là \(x\) (giờ, \(x > 0\)).
Thời gian vời II chảy một mình đầy bể là \(y\) (giờ, \(y > 0\)).
Hai vòi cùng chảy thì sau \[4\] giờ \(48\) phút đầy bể, ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{5}{{24}}\). (1)
Theo bài thì vòi I chảy trong \[4\] giờ rồi khóa vòi thứ nhất, vòi thứ hai tiếp tục chảy trong \(2\) giờ thì được \(\frac{2}{3}\) bể nên ta có phương trình: \(\frac{4}{x} + \frac{2}{y} = \frac{2}{3}\). (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{{24}}\\\frac{4}{x} + \frac{2}{y} = \frac{2}{3}\end{array} \right.\).
Giải hệ phương trình trên ta được: \(x = 8\,;\,\,\,y = 12\) (TMĐK).
Vậy để chảy riêng một mình đầy bể thì vòi I cần thời gian là \(8\) giờ.
Đáp án: 8.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (giờ) là thời gian người thứ nhất hoàn thành xong công việc một mình;
\(y\) (giờ) là thời gian người thứ hai hoàn thành xong công việc một mình.
a) Sai. Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên một người không thể hoàn thành công việc sau 1 giờ.
b) Sai. Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên thời gian người thứ nhất làm một mình hoàn thành công việc nhiều hơn thời gian người thứ hai làm một mình hoàn thành công việc.
c) Đúng. Trong 1 giờ người thứ nhất làm được \[\frac{1}{x}\] (công việc).
Trong 1 giờ người thứ hai làm được \[\frac{1}{y}\] (công việc) \(\left( {x,\,\,y > 0} \right)\).
Đổi: 1 giờ 12 phút \[ = \frac{5}{6}\] giờ.
Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên \[\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\]. (1)
Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên \[\frac{1}{x} = \frac{3}{{2y}}.\] (2)
Từ (1) và (2) ta có hệ phương trình \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{x} = \frac{3}{{2y}}\end{array} \right.\].
Thay phương trình thứ hai vào phương trình thứ nhất, ta được
\[\frac{3}{{2y}} + \frac{1}{y} = \frac{5}{6}\]
\[\frac{5}{{2y}} = \frac{5}{6}\]
\[\frac{1}{y} = \frac{1}{3}\]
\(y = 3\) (TMĐK)
Vậy thời gian người thứ hai hoàn thành công việc nếu làm một mình là 3 giờ.
d) Sai. Thay \(y = 3\) thay vào \[\frac{1}{x} = \frac{3}{{2y}}\], ta có: \[\frac{1}{x} = \frac{3}{{2 \cdot 3}} = \frac{1}{2}\] nên \(x = 2\) (TMĐK).
Do đó, nếu làm một mình thì trong 1 giờ người thứ nhất làm được \(\frac{1}{2}\) công việc.
Lời giải
Ta có \( - 5x + 2y = 7\) hay \(2y = 5x + 7\).
Khi đó \(y = \frac{{5x + 7}}{2} = 2x + \frac{{x + 7}}{2}.\)
Đặt \(t = \frac{{x + 7}}{2}\) nên \(x = 2t - 7\).
Suy ra \(y = 2\left( {2t - 7} \right) + t\) nên \(y = 5t - 14\,\,\left( {t \in \mathbb{Z}} \right)\).
Nên nghiệm nguyên của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t - 7}\\{y = 5t - 14}\end{array}} \right.\)\(\left( {t \in \mathbb{Z}} \right)\).
Vì \[x,{\rm{ }}y\] nguyên âm nên \(\left\{ {\begin{array}{*{20}{c}}{2t - 7 < 0}\\{5t - 14 < 0}\end{array}} \right.\)O10-2024-GV154O10-2024-GV147 nên \(\left\{ {\begin{array}{*{20}{c}}{t < \frac{7}{2}}\\{t < \frac{{14}}{5}}\end{array}} \right.\) suy ra \(t\)\( < \frac{{14}}{5}\).
Vì nghiệm nguyên âm lớn nhất, mà \[t\] nguyên nên \(t = 2\)
Vậy \(x = - 3\,;\,\,y = - 4.\)
Đáp án: −7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[m = 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.