Câu hỏi:

08/10/2025 42 Lưu

B. Tự luận

Độ bền \(S\) của dầm gỗ hình chữ nhật tỉ lệ với tích của chiều rộng \(w\) và bình phương chiều sâu \(d\) của nó (xem hinh vẽ). Tìm kích thước của dầm gỗ bền nhất có thể được cắt từ một khúc gỗ hình trụ có đường kính bằng 12 inch.

index_html_e26831820d2a0c06.png

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đề bài suy ra công thức tính độ bền của dầm gỗ có dạng \(S = kw{d^2}\) với hằng số \(k > 0\) cố định nào đó (là hệ số tỉ lệ). Mặt khác, do \({d^2} + {w^2} = 144\) nên ta có \(S = kw\left( {144 - {w^2}} \right) = k\left( {144w - {w^3}} \right)\), \(0 < w < 12\).

Ta có: \(S' = k\left( {144 - 3{w^2}} \right);S' = 0 \Leftrightarrow w = 4\sqrt 3 \) (do \(w > 0\)).

Lập bảng biến thiên của hàm số:

index_html_8b4036ee02f956c6.png

Vậy dầm gỗ có độ bền lớn nhất khi có chiều rộng \(w = 4\sqrt 3 \) inch và chiều sâu \(d = 4\sqrt 6 \) inch.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\). Lợi nhuận thu được khi bán \(x\) mét vải lụa là:

\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).

Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\).

\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\).

Bảng biến thiên:

index_html_2eece90a4b27b6ab.png

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.

Đáp án: 1200.

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).