Cho hàm số\(y = \frac{{2x - 1}}{{x + 2}}\). Mệnh đề nào sau đây sai?
Đồ thị hàm số có đúng hai đường tiệm cận.
Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Hàm số không có giá trị lớn nhất, không có giá trị nhỏ nhất.
Hàm số đồng biến trên tập xác định của nó.
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Chọn D
Hàm số đã cho có:
Tập xác định:\(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).
Đạo hàm \(y' = \frac{5}{{{{(x + 2)}^2}}} > 0\,,\,\forall x \ne - 2\).
Nên hàm số đồng biến trên từng khoảng xác định của nó và hàm số không có giá trị lớn nhất, giá trị nhỏ nhất.
Tiệm cận đứng \(x = - 2\), tiệm cận ngang \(y = 2\).
Đối chiếu với các phương án ta thấy A đúng, B đúng, C đúng, D sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.
\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow h'\left( t \right) = - 0,03{t^2} + 2,2t - 30 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 55 \notin \left( {0;50} \right)\\t = 18 \in \left( {0;50} \right)\end{array} \right.\)
b) Sai. Dựa vào bảng biến thiên trên ta thấy trong \(50\) giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao thấp nhất mà con tàu đạt được tại thời điểm \(t \approx 18\left( {\rm{s}} \right)\).
c) Đúng.\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) = - 0,03{t^2} + 2,2t - 30\)
\( \Rightarrow a\left( t \right) = v'\left( t \right) = - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).
Vận tốc của con tàu lớn nhất mà con tàu đạt được là \(10,33\,\,\left( {{\rm{km/s}}} \right)\).
d) Sai.\(h\left( t \right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250 \Rightarrow v\left( t \right) = h'\left( t \right) = - 0,03{t^2} + 2,2t - 30\)
\( \Rightarrow a\left( t \right) = v'\left( t \right) = - 0,06t + 2,2 = 0 \Leftrightarrow t \approx 37\).
Khi đó: \({v_{{\rm{max}}}} = 10,33 \Leftrightarrow t \approx 37;\,\,\,\,h\left( {37} \right) = 139,37\)km.
Lời giải
Theo đề bài, vận tốc của cá khi bơi trên sông là \(v - 6\), khi đó thời gian để cá bơi đến nơi sinh sản là \(t = \frac{{300}}{{v - 6}}\).
Khi đó, \(E\left( v \right) = c{v^3}\frac{{300}}{{v - 6}}\) với \(v > 6\). Đặt \(x = v - 6\).
Bài năng lượng tiêu hao của cá được tính bởi hàm số:
\[f\left( x \right) = 300c\frac{{{{\left( {x + 6} \right)}^3}}}{x} = 300c\left( {{x^2} + 18x + 108 + \frac{{216}}{x}} \right)\] với \(x > 0\).
Ta có: \[f'\left( x \right) = 300c\left( {2x + 18 - \frac{{216}}{{{x^2}}}} \right) = 0 \Leftrightarrow 2{x^3} + 18{x^2} - 216 = 0 \Rightarrow x = 3\].
Bảng biến thiên:
Vậy \(\mathop {\min }\limits_{x \in \left( {0; + \infty } \right)} f\left( x \right) = f\left( 3 \right)\) hay khi vận tốc của cá khi nước đứng yên là \(v = 9\,{\rm{km/h}}\) thì cá ít tốn năng lượng nhất.
Đáp án: 9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Hàm số không đạt cực tiểu tại điểm \(x = 2\).
Hàm số đạt cực đại tại điểm \(x = - 1\).
Điểm cực đại của đồ thị hàm số là \(\left( { - 1;2} \right)\).
Giá trị cực đại của hàm số là \(y = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(\left( { - \infty ; - 1} \right)\).
\(\left( { - 1;0} \right)\).
\(\left( { - 1;1} \right)\).
\(\left( {0;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.