Câu hỏi:

09/10/2025 14 Lưu

Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím

A.  MODE   5  2.

B.  MODE   5  3.

C.  MODE   5    1  .

D.  MODE     1  .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Khi tìm nghiệm (đúng hoặc gần đúng) của hệ hai phương trình bậc nhất hai ẩn bằng cách sử dụng máy tính cầm tay, trước tiên, ta cần mở chương trình giải hệ phương trình bậc nhất hai ẩn.

Khi đó ta ấn liên tiếp các phím:  MODE   5    1  . 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi  (giờ) là thời gian người thứ nhất hoàn thành xong công việc một mình;

\(y\) (giờ) là thời gian người thứ hai hoàn thành xong công việc một mình.

a) Sai. Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên một người không thể hoàn thành công việc sau 1 giờ.

b) Sai. Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên thời gian người thứ nhất làm một mình hoàn thành công việc nhiều hơn thời gian người thứ hai làm một mình hoàn thành công việc.

c) Đúng. Trong 1 giờ người thứ nhất làm được \[\frac{1}{x}\] (công việc).

Trong 1 giờ người thứ hai làm được \[\frac{1}{y}\] (công việc) \(\left( {x,\,\,y > 0} \right)\).

Đổi: 1 giờ 12 phút \[ = \frac{5}{6}\] giờ.

Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên \[\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\].   (1)

Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên \[\frac{1}{x} = \frac{3}{{2y}}.\]                     (2)

Từ (1) và (2) ta có hệ phương trình \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{x} = \frac{3}{{2y}}\end{array} \right.\].

Thay phương trình thứ hai vào phương trình thứ  nhất, ta được

\[\frac{3}{{2y}} + \frac{1}{y} = \frac{5}{6}\]

\[\frac{5}{{2y}} = \frac{5}{6}\]

\[\frac{1}{y} = \frac{1}{3}\]

\(y = 3\) (TMĐK)

Vậy thời gian người thứ hai hoàn thành công việc nế\(\frac{1}{2}\)u làm một mình là 3 giờ.

d) Sai. Thay \(y = 3\) thay vào \[\frac{1}{x} = \frac{3}{{2y}}\], ta có: \[\frac{1}{x} = \frac{3}{{2 \cdot 3}} = \frac{1}{2}\] nên \(x = 2\) (TMĐK).

Do đó, nếu làm một mình thì trong 1 giờ người thứ nhất làm được  công việc.

Lời giải

Gọi \[x\] (triệu đồng) là giá niêm yết của máy hút ẩm và \[y\] (triệu đồng) là giá niêm yết của quạt cây \[\left( {0 < x < 9,\,\,0 < y < 9} \right).\]

Tổng số tiền của máy hút ẩm và quạt cây là \[9\] triệu đồng nên ta có phương trình \[x + y = 9\]        (1)

Khi máy hút ẩm được giảm \[20\% \] so với giá niêm yết và quạt cây được giảm \[10\% \] so với giá niêm yết thì số tiền được giảm giá là 1,6 triệu đồng nên ta có phương trình:

\[20\% .x + 10\% .y = 1,6\] hay \[\frac{1}{5}x + \frac{1}{{10}}y = 1,6\]          (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\frac{1}{5}x + \frac{1}{{10}}y = 1,6\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ phương trình (1), ta có \[x = 9 - y\]       (*)

Thế (*) vào phương trình (2), ta được \[\frac{1}{5}\left( {9 - y} \right) + \frac{1}{{10}}y = 1,6\].

Giải phương trình:

\[\frac{1}{5}\left( {9 - y} \right) + \frac{1}{{10}}y = 1,6\]

\[\frac{9}{5} - \frac{1}{5}y + \frac{1}{{10}}y = 1,6\].

\[ - \frac{1}{{10}}y =  - \frac{1}{5}\]

\[y = 2\] (thỏa mãn điều kiện).

Thế \[y = 2\] vào phương trình (*), ta được \[x = 9 - y = 9 - 2 = 7\] (thỏa mãn điều kiện).

Vì vậy giá niêm yết của máy hút ẩm là \[7\] triệu đồng và quạt cây là \[2\] triệu đồng.

Do đó số tiền theo giá niêm yết bác Xuân phải trả cho siêu thị khi mua hai máy hút ẩm và ba cái quạt cây là: \[2.7 + 3.2 = 20\] (triệu đồng).

Vậy theo giá niêm yết, nếu bác Xuân mua hai máy hút ẩm và ba cái quạt cây thì bác Xuân phải trả cho siêu thị 20 triệu đồng.

Đáp án: 20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m = 1\).   

B. \(m =  - 1\). 
C. \(m =  - 2\).
D. \(m = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP