Câu hỏi:

09/10/2025 39 Lưu

Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm trong \[6\] ngày thì xong công việc. Hai người làm cùng nhau trong \[3\] ngày thì người thứ nhất được chuyển đi làm công việc khác, người thứ hai làm một mình trong \[4\] ngày nữa thì hoàn thành công việc. Gọi \(x\) và \(y\) lần lượt là thời gian người thứ nhất và người thứ hai làm một mình hoàn thành công việc. Khi đó hệ phương trình biểu diễn mối quan hệ giữa \(x\) và \(y\) là

A. \[\left\{ \begin{array}{l}x + y = 6\\x + y = 1.\end{array} \right.\]  
B. \[\left\{ \begin{array}{l}x + y = \frac{1}{6}\\x + y = 1.\end{array} \right.\]  
C. \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = 6\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]    
D. \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Trong một ngày, người thứ nhất làm một mình được \(\frac{1}{x}\) (công việc).

Trong một ngày, người thứ hai làm một mình được \(\frac{1}{y}\) (công việc).

Trong một ngày, cả hai người làm được \[\frac{1}{x} + \frac{1}{y}\] (công việc).

Vì hai người cùng làm trong \[6\] ngày thì xong công việc nên trong một ngày, cả hai người hoàn thành được \[\frac{1}{6}\] công việc.

Do đó ta có phương trình \[\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\]          (1)

Vì người thứ nhất làm trong \[3\] ngày và người hai làm trong \[3 + 4 = 7\] ngày thì hoàn thành công việc nên ta có phương trình \[\frac{3}{x} + \frac{7}{y} = 1\]             (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b =  - 1\,;\,\,c = m + 1\)(\(m\) là tham số).

b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).

Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).

Từ đó \(5 - y = 3\) nên \(y = 2\).

Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)

c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)

Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)

d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì

\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).

Lời giải

Gọi  (giờ) là thời gian người thứ nhất hoàn thành xong công việc một mình;

\(y\) (giờ) là thời gian người thứ hai hoàn thành xong công việc một mình.

a) Sai. Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên một người không thể hoàn thành công việc sau 1 giờ.

b) Sai. Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên thời gian người thứ nhất làm một mình hoàn thành công việc nhiều hơn thời gian người thứ hai làm một mình hoàn thành công việc.

c) Đúng. Trong 1 giờ người thứ nhất làm được \[\frac{1}{x}\] (công việc).

Trong 1 giờ người thứ hai làm được \[\frac{1}{y}\] (công việc) \(\left( {x,\,\,y > 0} \right)\).

Đổi: 1 giờ 12 phút \[ = \frac{5}{6}\] giờ.

Hai người cùng làm chung một công việc thì xong trong 1 giờ 12 phút nên \[\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\].   (1)

Mỗi giờ phần việc người thứ nhất làm nhiều gấp rưỡi người thứ hai nên \[\frac{1}{x} = \frac{3}{{2y}}.\]                     (2)

Từ (1) và (2) ta có hệ phương trình \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{5}{6}\\\frac{1}{x} = \frac{3}{{2y}}\end{array} \right.\].

Thay phương trình thứ hai vào phương trình thứ  nhất, ta được

\[\frac{3}{{2y}} + \frac{1}{y} = \frac{5}{6}\]

\[\frac{5}{{2y}} = \frac{5}{6}\]

\[\frac{1}{y} = \frac{1}{3}\]

\(y = 3\) (TMĐK)

Vậy thời gian người thứ hai hoàn thành công việc nế\(\frac{1}{2}\)u làm một mình là 3 giờ.

d) Sai. Thay \(y = 3\) thay vào \[\frac{1}{x} = \frac{3}{{2y}}\], ta có: \[\frac{1}{x} = \frac{3}{{2 \cdot 3}} = \frac{1}{2}\] nên \(x = 2\) (TMĐK).

Do đó, nếu làm một mình thì trong 1 giờ người thứ nhất làm được  công việc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m = 1\).   

B. \(m =  - 1\). 
C. \(m =  - 2\).
D. \(m = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP