Lớp \(10{B_1}\) có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 2 học sinh chỉ giỏi Toán và Lý, 3 học sinh chỉ giỏi Toán và Hóa, 1 học sinh chỉ giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Vậy:
a) Số học sinh chỉ giỏi môn Toán là 1 học sinh
b) Số học sinh chỉ giỏi môn Lý là 1 học sinh
c) Số học sinh chỉ giỏi môn Hóa là 2 học sinh
d) Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) là 10 học sinh.
Lớp \(10{B_1}\) có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 2 học sinh chỉ giỏi Toán và Lý, 3 học sinh chỉ giỏi Toán và Hóa, 1 học sinh chỉ giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Vậy:
a) Số học sinh chỉ giỏi môn Toán là 1 học sinh
b) Số học sinh chỉ giỏi môn Lý là 1 học sinh
c) Số học sinh chỉ giỏi môn Hóa là 2 học sinh
d) Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) là 10 học sinh.
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương l (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Ta thực hiện biểu đồ Ven như hình bên.

a) Số học sinh chỉ giỏi môn Toán: \(7 - 3 - 1 - 2 = 1\).
b) Số học sinh chỉ giỏi môn Lý: \(5 - 1 - 1 - 2 = 1\).
c) Số học sinh chỉ giỏi môn Hóa: \(6 - 3 - 1 - 1 = 1\).
d) Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) là: \(1 + 2 + 1 + 1 + 1 + 3 + 1 = 10\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện: \(m - 1 < 2m + 1 \Leftrightarrow m > - 2\)
Để \(A \subset B\) thì: \(\left\{ {\begin{array}{*{20}{l}}{ - 2 < m - 1}\\{2m + 1 \le 3}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{m > - 1}\\{m \le 1}\end{array} \Rightarrow - 1 < m \le 1} \right.} \right.\)
So điều kiện ta được \( - 1 < m \le 1\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \{ 0;1\} \).
Vậy có 2 giá trị nguyên của \(m\) để \(A \subset B\).
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
a) \(A = \left\{ { - \frac{1}{2};0;2} \right\}\) vì \(\left( {2x - {x^2}} \right)\left( {2{x^2} - 3x - 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - {x^2} = 0}\\{2{x^2} - 3x - 2 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\\{x = - \frac{1}{2}}\end{array}} \right.} \right.\).
b) \(B = \{ 2;3;4;5\} \).
c) \(A \cap B = \left\{ 2 \right\}\)
d) \(A \cup B = \left\{ { - \frac{1}{2};0;2;3;4;5} \right\}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Hãy liệt kê các phần tử của tập hợp \(X = \left\{ {x \in \mathbb{Z}|2{x^2} - 3x + 1 = 0} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
