Câu hỏi:

09/10/2025 1,831 Lưu

Trong không gian với một hệ trục toạ độ cho trước (đơn vị đo lấy theo km), ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm \(A\left( {800;500;7} \right)\) đến điểm \(B\left( {940;550;8} \right)\) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 10 phút tiếp theo \(D\left( {x;y;z} \right)\). Khi đó \(x + y + z = ?\)

Trong không gian với một hệ trục toạ độ cho trước (đơn vị đo lấy theo km), ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm  A ( 800 ; 500 ; 7 )  đến điểm  B ( 940 ; 550 ; 8 )  trong 10 phút.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1689

Gọi \(D\left( {x;y;z} \right)\) là vị trí của máy bay sau 10 phút bay tiếp theo (tính từ thời điểm máy bay ở điểm \(B\)). Vì hướng của máy bay không đổi nên \(\overrightarrow {AB} \) và \(\overrightarrow {BD} \) cùng hướng. Do vận tốc máy bay không đổi và thời gian bay từ \(A\) đến \(B\) bằng thời gian bay từ \[B\] đến \(D\) nên \(AB = BD\).

Do đó, \(\overrightarrow {BD} = \overrightarrow {AB} = \left( {140;50;1} \right)\).

Mặt khác: \(\overrightarrow {BD} = \left( {x - 940;y - 550;z - 8} \right)\) nên \(\left\{ {\begin{array}{*{20}{l}}{x - 940 = 140}\\{y - 550 = 50}\\{z - 8 = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 1080}\\{y = 600}\\{z = 9}\end{array}} \right.} \right.\).

Vậy \(D\left( {1080;600;9} \right)\). Vậy tọa độ của máy bay trong 10 phút tiếp theo là \(\left( {1080;600;9} \right)\).

Suy ra \(x + y + z = 1689\).

Đáp án: 1689.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

index_html_34eeeeaf9bb3e5a5.png

a) Sai. Kẻ \(TM \bot Oy\), \(CN \bot Oy\).

Vì \(T\) là hình chiếu của \(Q\) lên \(\left( {Oxy} \right)\) nên

\(\left\{ \begin{array}{l}{x_Q} = {x_T} = - OD = - \left( {AD - OA} \right) = - 6\\{y_Q} = {y_T} = OH = \frac{{AB}}{2} = 3\end{array} \right.\).

\({z_Q} = QT = 7\)

Suy ra \(Q\left( { - 6;\,3;\,7} \right)\).

b) Đúng. Vì \(C \in \left( {Oxy} \right)\) nên \({z_C} = 0\).

Ta có \(\left\{ \begin{array}{l}{x_C} = - OD = - 6\\{y_C} = ON = AB = 6\end{array} \right.\).Suy ra \(C\left( { - 6;\,6;\,0} \right)\).Vậy \(\overrightarrow {OC} = \left( { - 6;\,6;\,0} \right)\).

c) Đúng Gọi \(L\) là trung điểm của \(FG\).

Ta có: \({z_K} = OK = AE = 5\).

Suy ra \(K\left( {0;\,0;\,5} \right)\).

\( \Rightarrow OK = 5\).

\(B\), \(C\) lần lượt là hình chiếu của \(F\), \(G\) lên \(\left( {Oxy} \right)\).

Suy ra \(F\left( {2;\,6;\,5} \right)\), \(G\left( { - 6;\,6;\,5} \right)\).

Mà \(L\) là trung điểm của \(FG\) nên \(L\left( { - 2;\,6;\,5} \right)\)\( \Rightarrow KL = 2\sqrt {10} \).

Vậy độ dài đoạn cáp tối thiểu từ \(O\) đến \(K\)sau đó nối thẳng đến camera là

\(OK + KL = 5 + 2\sqrt {10} \) (m)

d) Sai.\(FG = \sqrt {{{\left( { - 6 - 2} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {5 - 5} \right)}^2}} = 8\) (m) .

\(GQ = \sqrt {{{\left( { - 6 + 6} \right)}^2} + {{\left( {3 - 6} \right)}^2} + {{\left( {7 - 5} \right)}^2}} = \sqrt {13} \) (m).

Suy ra \({S_{FGQP}} = FG \cdot GQ = 8\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Diện tích lợp tôn mái nhà là \(2{S_{FGQP}} = 16\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Số tiền cần bỏ ra để mua tôn lợp mái nhà là

\(16\sqrt {13} \cdot 130\,000 \approx 7\,500\,000\) (đồng).

Lời giải

Đáp án đúng: B

Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).

Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).