Trong không gian với hệ trục \(Oxyz\) (đơn vị trên mỗi trục là 1 m), một flycam bay với vận tốc có độ lớn và hướng không đổi. Tại thời điểm \(t = 0\), flycam ở vị trí \(A\left( {1;\,2;\,3} \right)\) và sau 10 phút nó ở vị trí \(B\left( {21;\,32;\,33} \right)\).
(a)Flycam không bay qua vị trí \[D\left( {5;\,8;\,9} \right)\].
(b)Vectơ vận tốc của flycam có tọa độ là \(\overrightarrow v = \left( {20;\,30;\,30} \right)\).
(c)Độ lớn của vận tốc flycam là \(\sqrt {22} \) (m/phút).
(d)Sau 15 phút vị trí flycam là \(C\left( {31;\,47;\,48} \right)\).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:


a) Sai.\(\overrightarrow {AB} = \left( {20;\,30;\,30} \right)\); \(\overrightarrow {AD} = \left( {4;\,6;\,6} \right)\).
Ta có \(\frac{{20}}{4} = \frac{{30}}{6} = \frac{{30}}{6}\).
Suy ra \(\overrightarrow {AB} \), \(\overrightarrow {AD} \) cùng phương.
\( \Rightarrow \) 3 điểm \(A\), \(B\), \(D\) thẳng hàng.
Do đó flycam bay qua vị trí \[D\left( {5;\,8;\,9} \right)\].
b) Sai.Flycam ở vị trí \(A\left( {1;\,2;\,3} \right)\) và sau 10 phút nó ở vị trí \(B\left( {21;\,32;\,33} \right)\).
\( \Rightarrow \)\(\overrightarrow {AB} = 10\overrightarrow v \)\( \Leftrightarrow \overrightarrow v = \frac{{\overrightarrow {AB} }}{{10}} = \left( {2;\,3;\,3} \right)\).
c) Đúng. Độ lớn của vận tốc flycam là \(\left| {\overrightarrow v } \right| = \sqrt {{2^2} + {3^2} + {3^2}} = \sqrt {22} \)(m/phút).
d) Đúng.Tại thời điểm \(t = 0\), flycam ở vị trí \(A\) và sau 15 phút flycam ở vị trí \(C\).
Suy ra \(\overrightarrow {AC} = 15\overrightarrow v \)\( \Leftrightarrow \left( {{x_C} - 1;\,{y_C} - 2;\,{z_C} - 3} \right) = 15\left( {2;\,3;\,3} \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 31\\{y_C} = 47\\{z_C} = 48\end{array} \right.\).
Vậy \(C\left( {31;\,47;\,48} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.
Theo giả thiết ta có
\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.
Đáp án: 5,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.