Câu hỏi:

09/10/2025 777 Lưu

Trong không gian với hệ trục \(Oxyz\) (đơn vị trên mỗi trục là 1 m), một flycam bay với vận tốc có độ lớn và hướng không đổi. Tại thời điểm \(t = 0\), flycam ở vị trí \(A\left( {1;\,2;\,3} \right)\) và sau 10 phút nó ở vị trí \(B\left( {21;\,32;\,33} \right)\).

(a)Flycam không bay qua vị trí \[D\left( {5;\,8;\,9} \right)\].

(b)Vectơ vận tốc của flycam có tọa độ là \(\overrightarrow v = \left( {20;\,30;\,30} \right)\).

(c)Độ lớn của vận tốc flycam là \(\sqrt {22} \) (m/phút).

(d)Sau 15 phút vị trí flycam là \(C\left( {31;\,47;\,48} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong không gian với hệ trục  O x y z  (đơn vị trên mỗi trục là 1 m), một flycam bay với vận tốc có độ lớn và hướng không đổi. Tại thời điểm  t = 0 , flycam ở vị trí  A ( 1 ; 2 ; 3 )  và sau 10 phút nó ở vị trí  B ( 21 ; 32 ; 33 ) . (ảnh 1)

a) Sai.\(\overrightarrow {AB} = \left( {20;\,30;\,30} \right)\); \(\overrightarrow {AD} = \left( {4;\,6;\,6} \right)\).

Ta có \(\frac{{20}}{4} = \frac{{30}}{6} = \frac{{30}}{6}\).

Suy ra \(\overrightarrow {AB} \), \(\overrightarrow {AD} \) cùng phương.

\( \Rightarrow \) 3 điểm \(A\), \(B\), \(D\) thẳng hàng.

Do đó flycam bay qua vị trí \[D\left( {5;\,8;\,9} \right)\].

b) Sai.Flycam ở vị trí \(A\left( {1;\,2;\,3} \right)\) và sau 10 phút nó ở vị trí \(B\left( {21;\,32;\,33} \right)\).

\( \Rightarrow \)\(\overrightarrow {AB} = 10\overrightarrow v \)\( \Leftrightarrow \overrightarrow v = \frac{{\overrightarrow {AB} }}{{10}} = \left( {2;\,3;\,3} \right)\).

c) Đúng. Độ lớn của vận tốc flycam là \(\left| {\overrightarrow v } \right| = \sqrt {{2^2} + {3^2} + {3^2}} = \sqrt {22} \)(m/phút).

d) Đúng.Tại thời điểm \(t = 0\), flycam ở vị trí \(A\) và sau 15 phút flycam ở vị trí \(C\).

Suy ra \(\overrightarrow {AC} = 15\overrightarrow v \)\( \Leftrightarrow \left( {{x_C} - 1;\,{y_C} - 2;\,{z_C} - 3} \right) = 15\left( {2;\,3;\,3} \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 31\\{y_C} = 47\\{z_C} = 48\end{array} \right.\).

Vậy \(C\left( {31;\,47;\,48} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).

Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].

c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].

d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + \overrightarrow b - 2\overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a - 2\overrightarrow b + \overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP