Câu hỏi:

09/10/2025 4 Lưu

Diện tích hình phẳng gạch sọc trong hình vẽ dưới bằng

index_html_e01d73bbd9a9dcf1.png

A.

\[\int\limits_1^3 {\left( {{2^x} - 2} \right)\,{\rm{d}}x} \].

B.

\[\int\limits_1^3 {\left( {{2^x} + 2} \right)\,{\rm{d}}x} \].

C.

\(\int\limits_1^3 {\left( {2 - {2^x}} \right)\,{\rm{d}}x} \).

D.

\(\int\limits_1^3 {{2^x}\,{\rm{d}}x} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

Hình phẳng gạch sọc trong hình vẽ được giới hạn bởi các đường \(y = {2^x},y = 2,x = 1\) và \(x = 3\).

Do đó diện tích hình phẳng gạch sọc trong hình vẽ bằng \(\int\limits_1^3 {\left| {{2^x} - 2} \right|} \,{\rm{d}}x = \int\limits_1^3 {\left( {{2^x} - 2} \right)\,{\rm{d}}x} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \)\[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.

Lời giải

a) Sai. Chi phí mua 1 sản phẩm ứng với \(x = 0\), sau ra \(C = 5000.25 = 125\,000\) (đồng).

b) Đúng. Với \(x = 1\)ta có: \(C = 5000\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 137\,000\) (đồng).

Suy ra chi phí bảo trì năm đầu tiên của sản phẩm là \(137\,000 - 125\,000 = 12\,000\) (đồng).

c) Sai. Gọi \(x\)là số năm mà số tiền bảo trì bằng số tiền mua sản phẩm. Khi đó tổng số tiền mua và số tiền bảo trì là \(2 \cdot 125\,000 = 250\,000\).

\(5000\left( {25 + 3\int\limits_0^x {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 250\,000 \Leftrightarrow 25 + 3\left( {\frac{4}{5}{t^{\frac{5}{4}}}|_0^x} \right) = 50 \Leftrightarrow \frac{{12}}{5}{x^{\frac{5}{4}}} = 25 \Leftrightarrow x = {\left( {\frac{{75}}{2}} \right)^{\frac{4}{5}}} \approx 6,52\) năm.

d) Sai. Số tiền mua và bảo trì 1 sản phẩm trong 10 năm là:

\(C = 5000\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 5000\left( {25 + 24\sqrt[4]{{10}}} \right) \approx 338\,393,53\) (đồng).

Ta có: \(\frac{{10\,000\,000}}{{338\,393,53}} \approx 29,55\).

Vậy với 10 triệu đồng thì họ có thể mua và bảo trì tối đa 29 sản phẩm.