Câu hỏi:

09/10/2025 7 Lưu

Một hình cầu có bán kính 6 dm, người ta cắt bỏ hai phần bằng hai mặt phẳng song song và cùng vuông góc với đường kính để làm mặt xung quanh của một chiếc lu chứa nước (như hình vẽ). Tính thể tích \[V\](lít) mà chiếc lu chứa được biết mặt phẳng cách tâm mặt cầu 4 dm (làm tròn đến hàng đơn vị).

index_html_54f12a60cbe2fd34.png index_html_ceb339984530098a.png

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

771

Thể tích cần tìm là thể tích của khối tròn xoay khi quay hình phẳng \[\left( H \right)\] giới hạn bởi đồ thị hàm số \[f\left( x \right) = \sqrt {36 - {x^2}} \], trục hoành và các đường thẳng \[x = - 4,\,\,x = 4\] quanh trục hoành.

Do đó: \[V = \pi \int\limits_{ - 4}^4 {\left( {36 - {x^2}} \right)dx} = \frac{{736\pi }}{3} \approx 771\] lít.

Đáp án: 771.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để tính diện tích phần đổ bê tông, ta cần xác định diện tích giữa hai đường cong \(AB\) và \(DC\)

Đường cong DC là kết quả của việc tịnh tiến đường cong \(AB\) lên trên \(2\)m.

Giả sử hàm số của đường cong \(AB\) là \(f\left( x \right)\) thì hàm số của đường cong \(DC\) là \(f\left( x \right) + 2\).

Diện tích hình phẳng giới hạn bởi hai đường cong là: \[S = \int\limits_0^{10} {\left[ {f\left( x \right) + 2 - f\left( x \right)} \right]} {\rm{d}}x = 20\,{{\rm{m}}^2}\].

Lớp bê tông có độ dày là \(15\)cm tức là \(0,15\)m thì có thể tích là: \(20.0,15 = 3{{\rm{m}}^3}\).

Chi phí tổng cộng để đổ bê tông con đường đó là: \(3.1\,080\,000 = 3\,240\,000\) (đồng).

Lời giải

a) Đúng.\(\mathop {\lim }\limits_{x \to 0,{6^ - }} f\left( x \right) = \sqrt {4 - {{\left( {0,6} \right)}^2}} = \sqrt {4 - 0,36} = \sqrt {3,64} \approx 1,907\);

\(\mathop {\lim }\limits_{x \to 0,{6^ + }} f\left( x \right) = - \frac{{\sqrt {91} }}{{20}}.0,6 + \frac{{23\sqrt {91} }}{{100}} \approx 1,907\).

Vậy hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0,6\).

b) Đúng.Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.

c) Sai. Thể tích của giọt nước thủy tinh này là:

\[V = {V_1} + {V_2} = \pi \int\limits_{ - 2}^{0,6} {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}{\rm{d}}x + } \,\pi \int\limits_{0,6}^{4,6} {{{\left( { - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}} \right)}^2}{\rm{d}}x} = \frac{{4693\pi }}{{375}} \approx 39,32\] cm3.

d) Đúng. Khối lượng của giọt nước thủy tinh này là: \(m = \rho .V = 2,6.\frac{{4693\pi }}{{375}} \approx 102,22\)g.