Câu hỏi:

09/10/2025 241 Lưu

Cho hình vẽ dưới đây là đồ thị vận tốc \(v\left( t \right)\) của một vật (\(t = 0\) là thời điểm vật bắt đầu chuyển động). Tính quãng đường chuyển động và vận tốc trung bình của vật 10 giây đầu tiên.

index_html_25a09356649c228.png

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương trình đường thẳng \(OB:\,v = \frac{1}{2}t\).

Phương trình đường thẳng \(BC:\,v = t - 1\).

Phương trình đường thẳng \(CD:\,v = 3\).

Phương trình đường thẳng \(DE:\,v = - \frac{2}{3}t + \frac{{23}}{3}\).

Suy ra: \[v\left( t \right) = \left\{ \begin{array}{l}\frac{1}{2}t,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \le t \le 2\\t - 1,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 < t \le 4\\3,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 < t \le 7\\ - \frac{2}{3}t + \frac{{23}}{3},\,\,\,7 < t \le 10\end{array} \right.\].

Quãng đường chuyển động của vật trong 10 giây là:

\(S = \int\limits_0^{10} {v\left( t \right){\rm{d}}t} = \int\limits_0^2 {v\left( t \right){\rm{d}}t} + \int\limits_2^4 {v\left( t \right){\rm{d}}t} + \int\limits_4^7 {v\left( t \right){\rm{d}}t} + \int\limits_7^{10} {v\left( t \right){\rm{d}}t} \)\(S = \int\limits_0^2 {\frac{1}{2}t{\rm{d}}t} + \int\limits_2^4 {\left( {t - 1} \right){\rm{d}}t} + \int\limits_4^7 {3{\rm{d}}t} + \int\limits_7^{10} {\left( { - \frac{2}{3}t + \frac{{23}}{3}} \right){\rm{d}}t} = 20\,\,\left( {\rm{m}} \right)\).

Vận tốc trung bình của chuyển động là: \({v_{tb}} = \frac{S}{{10}} = \,2\,\left( {{\rm{m/s}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Chi phí mua 1 sản phẩm ứng với \(x = 0\), sau ra \(C = 5000.25 = 125\,000\) (đồng).

b) Đúng. Với \(x = 1\)ta có: \(C = 5000\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 137\,000\) (đồng).

Suy ra chi phí bảo trì năm đầu tiên của sản phẩm là \(137\,000 - 125\,000 = 12\,000\) (đồng).

c) Sai. Gọi \(x\)là số năm mà số tiền bảo trì bằng số tiền mua sản phẩm. Khi đó tổng số tiền mua và số tiền bảo trì là \(2 \cdot 125\,000 = 250\,000\).

\(5000\left( {25 + 3\int\limits_0^x {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 250\,000 \Leftrightarrow 25 + 3\left( {\frac{4}{5}{t^{\frac{5}{4}}}|_0^x} \right) = 50 \Leftrightarrow \frac{{12}}{5}{x^{\frac{5}{4}}} = 25 \Leftrightarrow x = {\left( {\frac{{75}}{2}} \right)^{\frac{4}{5}}} \approx 6,52\) năm.

d) Sai. Số tiền mua và bảo trì 1 sản phẩm trong 10 năm là:

\(C = 5000\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 5000\left( {25 + 24\sqrt[4]{{10}}} \right) \approx 338\,393,53\) (đồng).

Ta có: \(\frac{{10\,000\,000}}{{338\,393,53}} \approx 29,55\).

Vậy với 10 triệu đồng thì họ có thể mua và bảo trì tối đa 29 sản phẩm.

Lời giải

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).

Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \)\[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Đáp án: 300.