Trên cửa sổ có dạng hình chữ nhật, họa sĩ thiết kế logo hình con cá cho một doanh nghiệp kinh doanh hải sản. Logo là hình phẳng giới hạn bởi hai parabol với các kích thước được cho trong hình sau (đơn vị trên mỗi trục toạ độ là decimét).
(a) Lập phương trình các parabol \[y = f\left( x \right)\] và \[y = g\left( x \right)\].
(b) Tính diện tích của logo.
(c) Logo chỉ cho phép 50% lượng ánh sáng đi qua. Lượng ánh sáng đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười)?
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:

a) Từ đồ thị ta thấy parabol \(y = f\left( x \right) = a{x^2} + bx + c\) có đỉnh tại điểm \(O\left( {0\,;\,0} \right)\) nên \(c = 0\) và đi qua điểm \(A\left( {2\,;\,4} \right)\) nên \(4 = 4a + 2b\).
Giả sử \(b = 0\) (do parabol đối xứng quá trục tung) nên \(4a = 4 \Rightarrow a = 1\) nên \(y = f\left( x \right) = {x^2}\).
Parabol \(y = g\left( x \right) = m{x^2} + nx + p\) có đỉnh tại điểm \(E\left( {2\,;\,0} \right)\) nên \(y = - m{\left( {x - 2} \right)^2} + 0\) và đi qua điểm \(C\left( {3\,;\,1} \right)\) nên \(m = - 1\) nên \(y = g\left( x \right) = - {\left( {x - 2} \right)^2}\).
b) Phương trình hoành độ giao điểm của \(y = f\left( x \right)\) và \(y = g\left( x \right)\) là \({x^2} = - {\left( {x - 2} \right)^2}\)
\( \Leftrightarrow 2{x^2} - 4x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).
Diện tích của logo là:
\(S = \int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x = } \int\limits_1^2 {\left( {{x^2} + {{\left( {x - 2} \right)}^2}} \right){\rm{d}}x = \left( {\frac{2}{3}{x^3} - 2{x^2} + 4x} \right)} \left| \begin{array}{l}2\\1\end{array} \right. = \frac{{20}}{3}\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).
c) Logo chỉ cho phép 50% lượng ánh sáng đi qua. Diện tích cửa sổ là \(2.4 = 8\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).
Lượng ánh sáng đi qua cửa sổ trước khi làm logo là: \(100\% \) ánh sáng \( = \,\,8\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).
Lượng ánh sáng đi qua cửa sổ sau khi làm logo là: \(50\% .\frac{{20}}{3} = \frac{{10}}{3}\,\,\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).
Tổng lượng ánh sáng đi qua sau khi làm là: \(8 - \frac{{10}}{3} = \frac{{14}}{3}\,\,\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).
Lượng ánh sáng đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm\(\frac{{8 - \frac{{14}}{3}}}{8}.100 = 41,6\,\,\,\left( \% \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Để tính diện tích phần đổ bê tông, ta cần xác định diện tích giữa hai đường cong \(AB\) và \(DC\)
Đường cong DC là kết quả của việc tịnh tiến đường cong \(AB\) lên trên \(2\)m.
Giả sử hàm số của đường cong \(AB\) là \(f\left( x \right)\) thì hàm số của đường cong \(DC\) là \(f\left( x \right) + 2\).
Diện tích hình phẳng giới hạn bởi hai đường cong là: \[S = \int\limits_0^{10} {\left[ {f\left( x \right) + 2 - f\left( x \right)} \right]} {\rm{d}}x = 20\,{{\rm{m}}^2}\].
Lớp bê tông có độ dày là \(15\)cm tức là \(0,15\)m thì có thể tích là: \(20.0,15 = 3{{\rm{m}}^3}\).
Chi phí tổng cộng để đổ bê tông con đường đó là: \(3.1\,080\,000 = 3\,240\,000\) (đồng).
Lời giải
a) Đúng.\(\mathop {\lim }\limits_{x \to 0,{6^ - }} f\left( x \right) = \sqrt {4 - {{\left( {0,6} \right)}^2}} = \sqrt {4 - 0,36} = \sqrt {3,64} \approx 1,907\);
\(\mathop {\lim }\limits_{x \to 0,{6^ + }} f\left( x \right) = - \frac{{\sqrt {91} }}{{20}}.0,6 + \frac{{23\sqrt {91} }}{{100}} \approx 1,907\).
Vậy hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0,6\).
b) Đúng.Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.
c) Sai. Thể tích của giọt nước thủy tinh này là:
\[V = {V_1} + {V_2} = \pi \int\limits_{ - 2}^{0,6} {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}{\rm{d}}x + } \,\pi \int\limits_{0,6}^{4,6} {{{\left( { - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}} \right)}^2}{\rm{d}}x} = \frac{{4693\pi }}{{375}} \approx 39,32\] cm3.
d) Đúng. Khối lượng của giọt nước thủy tinh này là: \(m = \rho .V = 2,6.\frac{{4693\pi }}{{375}} \approx 102,22\)g.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.