Câu hỏi:

09/10/2025 9 Lưu

Trên cửa sổ có dạng hình chữ nhật, họa sĩ thiết kế logo hình con cá cho một doanh nghiệp kinh doanh hải sản. Logo là hình phẳng giới hạn bởi hai parabol với các kích thước được cho trong hình sau (đơn vị trên mỗi trục toạ độ là decimét).

index_html_c656f06aa8e30db7.png

(a) Lập phương trình các parabol \[y = f\left( x \right)\] và \[y = g\left( x \right)\].

(b) Tính diện tích của logo.

(c) Logo chỉ cho phép 50% lượng ánh sáng đi qua. Lượng ánh sáng đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Từ đồ thị ta thấy parabol \(y = f\left( x \right) = a{x^2} + bx + c\) có đỉnh tại điểm \(O\left( {0\,;\,0} \right)\) nên \(c = 0\) và đi qua điểm \(A\left( {2\,;\,4} \right)\) nên \(4 = 4a + 2b\).

Giả sử \(b = 0\) (do parabol đối xứng quá trục tung) nên \(4a = 4 \Rightarrow a = 1\) nên \(y = f\left( x \right) = {x^2}\).

Parabol \(y = g\left( x \right) = m{x^2} + nx + p\) có đỉnh tại điểm \(E\left( {2\,;\,0} \right)\) nên \(y = - m{\left( {x - 2} \right)^2} + 0\) và đi qua điểm \(C\left( {3\,;\,1} \right)\) nên \(m = - 1\) nên \(y = g\left( x \right) = - {\left( {x - 2} \right)^2}\).

b) Phương trình hoành độ giao điểm của \(y = f\left( x \right)\) và \(y = g\left( x \right)\) là \({x^2} = - {\left( {x - 2} \right)^2}\)

\( \Leftrightarrow 2{x^2} - 4x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).

Diện tích của logo là:

\(S = \int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x = } \int\limits_1^2 {\left( {{x^2} + {{\left( {x - 2} \right)}^2}} \right){\rm{d}}x = \left( {\frac{2}{3}{x^3} - 2{x^2} + 4x} \right)} \left| \begin{array}{l}2\\1\end{array} \right. = \frac{{20}}{3}\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).

c) Logo chỉ cho phép 50% lượng ánh sáng đi qua. Diện tích cửa sổ là \(2.4 = 8\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).

Lượng ánh sáng đi qua cửa sổ trước khi làm logo là: \(100\% \) ánh sáng \( = \,\,8\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).

Lượng ánh sáng đi qua cửa sổ sau khi làm logo là: \(50\% .\frac{{20}}{3} = \frac{{10}}{3}\,\,\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).

Tổng lượng ánh sáng đi qua sau khi làm là: \(8 - \frac{{10}}{3} = \frac{{14}}{3}\,\,\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).

Lượng ánh sáng đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm\(\frac{{8 - \frac{{14}}{3}}}{8}.100 = 41,6\,\,\,\left( \% \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để tính diện tích phần đổ bê tông, ta cần xác định diện tích giữa hai đường cong \(AB\) và \(DC\)

Đường cong DC là kết quả của việc tịnh tiến đường cong \(AB\) lên trên \(2\)m.

Giả sử hàm số của đường cong \(AB\) là \(f\left( x \right)\) thì hàm số của đường cong \(DC\) là \(f\left( x \right) + 2\).

Diện tích hình phẳng giới hạn bởi hai đường cong là: \[S = \int\limits_0^{10} {\left[ {f\left( x \right) + 2 - f\left( x \right)} \right]} {\rm{d}}x = 20\,{{\rm{m}}^2}\].

Lớp bê tông có độ dày là \(15\)cm tức là \(0,15\)m thì có thể tích là: \(20.0,15 = 3{{\rm{m}}^3}\).

Chi phí tổng cộng để đổ bê tông con đường đó là: \(3.1\,080\,000 = 3\,240\,000\) (đồng).

Lời giải

a) Đúng.\(\mathop {\lim }\limits_{x \to 0,{6^ - }} f\left( x \right) = \sqrt {4 - {{\left( {0,6} \right)}^2}} = \sqrt {4 - 0,36} = \sqrt {3,64} \approx 1,907\);

\(\mathop {\lim }\limits_{x \to 0,{6^ + }} f\left( x \right) = - \frac{{\sqrt {91} }}{{20}}.0,6 + \frac{{23\sqrt {91} }}{{100}} \approx 1,907\).

Vậy hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0,6\).

b) Đúng.Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.

c) Sai. Thể tích của giọt nước thủy tinh này là:

\[V = {V_1} + {V_2} = \pi \int\limits_{ - 2}^{0,6} {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}{\rm{d}}x + } \,\pi \int\limits_{0,6}^{4,6} {{{\left( { - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}} \right)}^2}{\rm{d}}x} = \frac{{4693\pi }}{{375}} \approx 39,32\] cm3.

d) Đúng. Khối lượng của giọt nước thủy tinh này là: \(m = \rho .V = 2,6.\frac{{4693\pi }}{{375}} \approx 102,22\)g.