Phần 3. Trắc nghiệm trả lời ngắn
Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Tìm giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\].
Phần 3. Trắc nghiệm trả lời ngắn
Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.
Tìm giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\].
Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:

Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]
\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]
\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]
\[3x < - 7\]
\[x < - \frac{7}{3}\]
Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]
Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)
Đáp án: −3.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Với \(a \le b\) thì \(a + c \le b + c.\) (cộng hai vế của bất phương trình với \(c).\)
b) Sai. Với \(a \le b\) thì \(ac \le bc\) với \(c > 0.\)
c) Sai. Với \(a \le b\) thì \(\frac{a}{c} \ge \frac{b}{c}\) với \(c < 0,\) nên \( - \frac{a}{c} \le - \frac{b}{c}.\)
d) Sai. Với \(a \le b\) thì \(a - b \le 0\).
Chẳng hạn nếu \(a + b \le 0\) thì \(\left( {a - b} \right)\left( {a + b} \right) \ge 0\) hay \({a^2} - {b^2} \ge 0\) nên \({a^2} \ge {b^2}.\)
Lời giải
a) Đúng. Bất phương trình \(\frac{{x + 4}}{5} < \frac{{x + 3}}{3} - \frac{{x - 2}}{2}\) là bất phương trình bậc nhất một ẩn.
b) Đúng. Ta có \(\frac{{x + 4}}{5} < \frac{{x + 3}}{3} - \frac{{x - 2}}{2}\) nên \(\frac{{x + 4}}{5} - \frac{{x + 3}}{3} + \frac{{x - 2}}{2} < 0\) (chuyển vế).
c) Sai. Ta có \(\frac{{x + 4}}{5} < \frac{{x + 3}}{3} - \frac{{x - 2}}{2}\) nên \(\frac{{6\left( {x + 4} \right)}}{{30}} < \frac{{10\left( {x + 3} \right)}}{{30}} - \frac{{15\left( {x - 2} \right)}}{{30}}\) (quy đồng mẫu số).
d) Sai. Ta có \(\frac{{x + 4}}{5} < \frac{{x + 3}}{3} - \frac{{x - 2}}{2}\)
\(\frac{{6(x + 4)}}{{30}} < \frac{{10(x + 3)}}{{30}} - \frac{{15(x - 2)}}{{30}}\)
\(6x + 24 < 10x + 30 - 15x + 30\)
\[6x - 10x + 15x < 30 + 30 - 24\]
\(11x < 36\)
\(x < \frac{{36}}{{11}} \approx 3,27\).
Vậy số nguyên lớn nhất thỏa mãn bất phương trình đã cho là \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[2a + 2 > 2b + 4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.