Câu hỏi:

10/10/2025 6 Lưu

Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói

A. \[a,\,\,b\] cùng dương.

B. \[a,\,\,b\] cùng âm. 
C. \[a,\,\,b\] cùng dấu.         
D. \[a,\,\,b\] trái dấu.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Với hai số thực \[a,\,\,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu và ngược lại.

Với hai số thực \[a,\,\,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bất phương trình:

\(3x - \left( {6 + 2x} \right) \le 5\left( {x + 4} \right)\)

\(3x - 6 - 2x \le 5x + 20\)

\(x - 6 \le 5x + 20\)

\(x - 5x \le 20 + 6\)

\( - 4x \le 26\)

\(x \ge \frac{{26}}{{ - 4}}\)

\(x \ge  - \frac{{13}}{2}.\)

Như vậy, nghiệm nhỏ nhất của bất phương trình là \(x =  - \frac{{13}}{2} = \frac{{ - 13}}{2}.\)

Theo bài, nghiệm nhỏ nhất của bất phương trình có dạng \(\frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản có mẫu số dương, nên \(a =  - 13\) và \(b = 2.\)

Do đó, giá trị biểu thức \(T = a + b =  - 13 + 2 =  - 11.\)

Đáp án: −11.

Lời giải

Gọi \(x\,\,({\rm{km}})\) là quãng đường tối đa bạn Vân có thể đi được \(\left( {x > 0} \right)\).

Nhận thấy \(17\,\,600 \cdot 30 = 528\,\,000 < 700\,\,000\) nên với \(700\,\,000\) đồng, ta có thể đi được nhiều hơn \(30\,{\rm{km}}\).

Do đó ta có: \(11\,\,000 + 29 \cdot 17\,\,600 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)

\(521\,\,400 + \left( {x - 30} \right) \cdot 14\,\,500 \le 700\,\,000\)

\(\left( {x - 30} \right) \cdot 14\,\,500 \le 178\,\,600\)

\(x - 30 \le \frac{{1\,\,786}}{{145}}\)

\(x \le \frac{{6\,\,136}}{{145}} \approx 42,317...\)

Để \(x\) lớn nhất thì \(x - 30 = 12\) nên \(x = 42\).

Vậy quãng đường tối đa bạn Vân có thể đi được là \(42\,{\rm{km}}\).

Đáp án: 42.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP