Điểm thi môn Toán lớp 10A2 của một Trường trung học phổ thông được trình bày ở bảng phân bố tần số sau
Điểm thi
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(10\)
Tần số
\(7\)
\(5\)
\(10\)
\(12\)
\(4\)
\(2\)
\(n = 40\)
Trong các giá trị dưới đây, giá trị nào gần nhất với phương sai của bảng phân bố tần số trên?
Điểm thi môn Toán lớp 10A2 của một Trường trung học phổ thông được trình bày ở bảng phân bố tần số sau
Điểm thi |
\(5\) |
\(6\) |
\(7\) |
\(8\) |
\(9\) |
\(10\) |
|
Tần số |
\(7\) |
\(5\) |
\(10\) |
\(12\) |
\(4\) |
\(2\) |
\(n = 40\) |
Quảng cáo
Trả lời:

Chọn D
Trong dãy số liệu về điểm thi môn Toán lớp 10A2 ta có
\(\overline x = \frac{1}{n}.\left( {{n_1}{x_1} + {n_2}{x_2} + ... + {n_6}{x_6}} \right) = \frac{1}{{40}}.\left( {7.5 + 5.6 + 10.7 + 12.8 + 4.9 + 2.10} \right) = 7,175\).
Phương sai là:
\(\begin{array}{l}{s^2} = \frac{1}{n}.\left( {{n_1}.{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}.{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_6}.{{\left( {{x_6} - \overline x } \right)}^2}} \right)\\\,\,\,\,\,\, = \frac{1}{{40}}.\left( {7.{{\left( {5 - 7,175} \right)}^2} + 5.{{\left( {6 - 7,175} \right)}^2} + 10.{{\left( {7 - 7,175} \right)}^2}} \right.\\\,\,\,\,\,\,\,\,\,\,\left. { + 12.{{\left( {8 - 7,175} \right)}^2} + 4.{{\left( {9 - 7,175} \right)}^2} + 2.{{\left( {10 - 7,175} \right)}^2}} \right)\\\,\,\,\,\,\, \approx 1,94.\end{array}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Nhiệt độ trung bình trong năm:
Phương sai \({s^2} = 21,98\), độ lệch chuẩn \(s = 4,69\).
Lời giải
Xét mẫu gồm 19 số: \(5\,\,\,6\,\,\,19\,\,\,21\,\,\,22\,\,\,23\,\,\,24\,\,\,25\,\,\,26\,\,\,27\,\,\,28\,\,\,29\,\,\,30\,\,\,31\,\,\,32\,\,\,33\,\,\,34\,\,\,48\,\,\,49\). Vị trí thứ 10 chính là trung vị của mẫu (bằng với tứ phân vị thứ hai), tức là \({Q_2} = 27\).
Xét nửa mẫu bên trái \({Q_2}:5\,\,\,\,6\,\,\,\,\,19\,\,\,\,21\,\,\,\,22\,\,\,\,23\,\,\,\,24\,\,\,\,25\,\,\,\,26\); ta có tứ phân vị thứ nhất (là trung vị nửa mẫu này): \({Q_1} = 22\).
Xét nửa mẫu bên phải \({Q_2}:28\quad 29\,\,\,\,30\,\,\,\,31\quad 32\quad 33\quad 34\quad 48\quad 49\); ta có tứ phân vị thứ ba (là trung vị nửa mẫu này): \({Q_3} = 32\).
Khoảng tứ phân vị là \(\Delta Q = {Q_3} - {Q_1} = 32 - 22 = 10\).
Ta có \(:{Q_1} - 1,5{\Delta _Q} = 22 - 1,5.10 = 7;{Q_3} + 1,5{\Delta _Q} = 32 + 1,5.10 = 47\).
Các số 5; 6 nhỏ hơn 7 và các số 48; 49 lớn hơn 37. Vì vậy giá trị bất thường trong mẫu số liệu là \(5;6;48;49\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.