Câu hỏi:

24/10/2025 155 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho đường thẳng \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 7}}\]. Phương trình mặt phẳng đi qua \[A\left( {1;2;3} \right)\] và vuông góc với đường thẳng d

\[4x + 3y + 7z - 11 = 0\].

\[4x + 3y + 7z + 11 = 0\].

\[4x + 3y - 7z + 11 = 0\].

\[4x + 3y - 7z - 11 = 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

Vì mặt phẳng vuông góc với đường thẳng d nên \[\overrightarrow n = \overrightarrow u = \left( {4;3; - 7} \right)\].

Phương trình mặt phẳng đi qua \[A\left( {1;2;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {4;3; - 7} \right)\].

\[4\left( {x - 1} \right) + 3\left( {y - 2} \right) - 7\left( {z - 3} \right) = 0\]\[ \Leftrightarrow 4x + 3y - 7z + 11 = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\)             \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\)          \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\)      \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c =  - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ  \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + 5 = 0}\\{x - 2y - 3z + 20 = 0}\end{array}} \right.\,\).

Từ phương trình thứ nhất chọn \(x =  - 5 \Rightarrow y = 0\). Thay vào phương trình còn lại ta được \(z = 5\).

Vậy điểm \(A\left( { - 5;0;5} \right)\) là một điểm thuộc đường nóc nhà. Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {Oxy} \right)\) và bằng 5 mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP