Trong không gian tọa độ \[Oxyz\] với mặt phẳng \[\left( {Oxy} \right)\] trùng với mặt đất với đơn vị trên mỗi trục là km, một hệ thống phòng không được đặt tại \(O\). Hệ thống phòng không được trạng bị Radar có thể phát hiện vật thể lạ trong phạm vị \(400\,{\rm{km}}\). Một vật thể (coi như một hạt) bay với tốc độ không đổi trên một đường thẳng, người quan sát Radar phát hiện vật thể di chuyển từ \(A\left( {320;148;45} \right)\) đến \(B\left( {280;133;40} \right)\) trong khoảng thời gian \(10\) giây.
a) Vectơ dịch chuyển của vật thể trên mỗi đơn vị thời gian được gọi là vectơ vận tốc của vật thể. Khi đó vectơ vận tốc của vật thể có tọa độ \(\overrightarrow v = \left( {4;1,5;0,5} \right)\) (đơn vị giây).
b) Đường thẳng \(AB\) có phương trình \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Khoảng thời gian từ khi vật thể ở A đến khi rơi xuống mặt đất là \(90\) giây.
d) Vị trí đầu tiên vật thể đi vào vùng quan sát của Radar có cao độ bằng \(48,25\)(kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
a) Sai. Vectơ vận tốc là \(\overrightarrow v = \frac{{\overrightarrow {AB} }}{t} = \left( { - 4; - 1,5; - 0,5} \right)\).
b) Đúng. Đường thẳng \(AB\) đi qua \(A\left( {320;148;45} \right)\) và có vectơ chỉ phương \(\overrightarrow {AB} = \left( { - 40; - 15; - 5} \right)\)nên ta có phương trình đường thẳng là \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Đúng. Phương trình chuyển động tại thời điểm \(t\) giây là \(\left\{ \begin{array}{l}x = 320 - 4t\\y = 148 - 1,5t\\z = 45 - 0,5t\end{array} \right.\).
Vật chạm đất tức là \(z\left( t \right) = 0 \Leftrightarrow 45 - 0,5t = 0 \Leftrightarrow t = 90\).
d) Sai. Radar phát hiện khi \(r\left( t \right) = \sqrt {{{\left( {380 - 4t} \right)}^2} + {{\left( {148 - 1,5t} \right)}^2} + \left( {45 - 0,5{t^2}} \right)} = 400\).
Giải phương trình ta được \(t \approx 0,11\).
Khi đó cao độ của vật là \(z\left( {0,11} \right) = 45 - 0,5.0,11 = 44,945 \approx 44,95\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + 5 = 0}\\{x - 2y - 3z + 20 = 0}\end{array}} \right.\,\).
Từ phương trình thứ nhất chọn \(x = - 5 \Rightarrow y = 0\). Thay vào phương trình còn lại ta được \(z = 5\).
Vậy điểm \(A\left( { - 5;0;5} \right)\) là một điểm thuộc đường nóc nhà. Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {Oxy} \right)\) và bằng 5 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




