Câu hỏi:

24/10/2025 49 Lưu

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + y - z + 1 = 0\). Điểm nào sau đây thuộc mặt phẳng \(\left( P \right)?\)

\(A\left( {1;1;3} \right).\)

\(B\left( {1;1; - 3} \right).\)

\(C\left( {3;1;1} \right).\)

\(D\left( { - 1; - 1;3} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

Ta có: \(1 + 1 - 3 + 1 = 0 \Rightarrow \) điểm \(A\left( {1;1;3} \right) \in \left( P \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC}  = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\). 

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là  \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

Lời giải

Gắn hình chóp cụt vào hệ trục \[Oxyz\] ta có:

\[O\left( {0;0;0} \right),\,\,\,A\left( {100;0;0} \right),\,\,\,G\left( {100;60;0} \right),\,\,\,D\left( {0;60;0} \right),\,\,\,B\left( {10;10;8} \right)\].

Do \[\overrightarrow {OA}  = \left( {100;0;0} \right),\,\,\overrightarrow {OB}  = \left( {10;10;8} \right)\] nên \[\vec n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {0; - 100;1000} \right)\].

Suy ra mặt phẳng \[\left( {OACB} \right)\] có vectơ pháp tuyến là \[\overrightarrow {{n_1}\,}  = \left( {0;1; - 10} \right)\].

Phương trình tổng quát của mặt phẳng \[\left( {OACB} \right)\] là \[y - 10z = 0\].

Do đó \[a = 0,\,c =  - 10,\,d = 0\]. Vậy \[a + c + d = 0 - 10 + 0 =  - 10\].

Đáp án: −10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 0\end{array} \right.\).

\(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - 2t\\z = 0\end{array} \right.\).

\(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - t\\z = 0\end{array} \right.\).

\(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP