Bác An cần thiết kế một nhà vườn ngoài trời để trồng hoa. Bác đã thiết kế và vẽ mô hình nhà vườn trong hệ trục toạ độ \[Axyz\] như hình vẽ, với các cột nhà là các đoạn thẳng \[AA',\,BB',\,CC'\] và \[DD'\]. Phần mái là tứ giác \(A'B'C'D'\) và hình vuông \(ABCD\) nằm trên mặt đất. Biết độ dài các đoạn thẳng \(AB = 25\,{\rm{m}},AA' = BB' = 4\,{\rm{m}}\) và \(CC' = DD' = 3\,{\rm{m}}\).

a) Toạ độ điểm \(A'\left( {0;\,0;\,4} \right)\).
b) Đường thẳng \(A'D'\) có phương trình tham số là \[\left\{ {\begin{array}{*{20}{c}}{x = 25t}\\{y = 0\,\,\,\,\,\,}\\{z = 4 - t}\end{array}\,\,\,\begin{array}{*{20}{c}}{}\\{,t \in \mathbb{R}}\\{}\end{array}} \right.\].
c) Bác An đặt một camera ở vị trí \(E\) trên cột \(AA'\) và cách mặt đất \(7\,{\rm{m}}\). Một vật ở vị trí \(M\left( {a;\,b;\,c} \right)\) thoả mãn \(MA = MB = MC = MD = \sqrt {\frac{{697}}{2}} \) thì cách camera \(\frac{{\sqrt {1266} }}{2}{\rm{m}}\).
d) Gọi \(\alpha \) là góc hợp bởi đường thẳng \(A'D'\) và mặt đất. Khi đó \(\cos \alpha = \frac{1}{{\sqrt {626} }}\,\).
Quảng cáo
Trả lời:
a) Đúng. Ta có \[AA' = 4\,{\rm{m}}\] nên toạ độ \(A'\left( {0;\,0;\,4} \right)\).
b) Đúng. Toạ độ điểm \(D'\left( {25;\,0;\,3} \right)\) nên vectơ chỉ phương \[{\overrightarrow u _{A'D'}} = \overrightarrow {A'D'} = \left( {25;\,0;\, - 1} \right)\].
Phương trình đường thẳng \(A'D'\) có vectơ chỉ phương \[{\overrightarrow u _{A'D'}} = \left( {25;\,0;\, - 1} \right)\] và đi qua điểm \(A'\left( {0;\,0;\,4} \right)\) là \[\left\{ {\begin{array}{*{20}{c}}{x = 25t}\\{y = 0\,\,\,\,\,\,}\\{z = 4 - t}\end{array}\,\,\,\begin{array}{*{20}{c}}{}\\{,t \in \mathbb{R}}\\{}\end{array}} \right.\].
c) Sai. Điểm \[E\] nằm trên cột \(AA'\) và cách mặt đất 7 m suy ra toạ độ \(E\left( {0;\,0;\,7} \right)\).
Gọi \[I\] là giao điểm của \[AC\]và \[\;BD\]. Do \(ABCD\) là hình vuông có cạnh \(AB = 25\,{\rm{m}}\) nên điểm \[I\]có toạ độ \(I\left( {\frac{{25}}{2};\frac{{25}}{2};0} \right)\) mà \(MA = MB = MC = MD\), do đó \(I\) là hình chiếu của \(M\) lên mặt phẳng \(\left( {ABCD} \right)\). Suy ra \(M\left( {\frac{{25}}{2};\frac{{25}}{2};c} \right)\) mà \(MA = \sqrt {\frac{{697}}{2}} \Leftrightarrow {\left( {\frac{{25}}{2}} \right)^2} + {\left( {\frac{{25}}{2}} \right)^2} + {c^2} = \frac{{697}}{2} \Leftrightarrow c = 6\)
\( \Rightarrow M\left( {\frac{{25}}{2};\frac{{25}}{2};6} \right)\) \( \Rightarrow ME = 17,706\).
d) Sai. Ta có \[\overrightarrow {A'D'} = \left( {25;\,0;\, - 1} \right)\] và vectơ pháp tuyến của mặt đất là \({\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;\,0;\,1} \right)\) do đó góc hợp với đường thẳng \(A'D'\) và mặt đất là \(\sin \alpha = \frac{{\left| {25.0 + 0.0 + ( - 1).1} \right|}}{{\sqrt {{{25}^2} + {{( - 1)}^2}} .\sqrt {{1^2}} }} = \frac{1}{{\sqrt {626} }}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).
Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)
Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).
Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC} = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)
Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\).
Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)
Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).
Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).
Thời gian đi quãng đường \[BC\]là \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].
Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.
Đáp án: 1,69.
Lời giải
Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x = - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]
Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).
Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).
Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].
\[\overrightarrow {AM} = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).
\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}} = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k = \pm \sqrt {10} \).
Vì \(k > 0 \Rightarrow k = \sqrt {10} \).
Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c = - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10} = 6\].
Đáp án: 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



