Câu hỏi:

24/10/2025 175 Lưu

Bác An cần thiết kế một nhà vườn ngoài trời để trồng hoa. Bác đã thiết kế và vẽ mô hình nhà vườn trong hệ trục toạ độ \[Axyz\] như hình vẽ, với các cột nhà là các đoạn thẳng \[AA',\,BB',\,CC'\] và \[DD'\]. Phần mái là tứ giác \(A'B'C'D'\) và hình vuông \(ABCD\) nằm trên mặt đất. Biết độ dài các đoạn thẳng \(AB = 25\,{\rm{m}},AA' = BB' = 4\,{\rm{m}}\) và \(CC' = DD' = 3\,{\rm{m}}\).

A drawing of a rectangular object

AI-generated content may be incorrect.

a)  Toạ độ điểm \(A'\left( {0;\,0;\,4} \right)\).

b) Đường thẳng \(A'D'\) có phương trình tham số là \[\left\{ {\begin{array}{*{20}{c}}{x = 25t}\\{y = 0\,\,\,\,\,\,}\\{z = 4 - t}\end{array}\,\,\,\begin{array}{*{20}{c}}{}\\{,t \in \mathbb{R}}\\{}\end{array}} \right.\].

c) Bác An đặt một camera ở vị trí \(E\) trên cột \(AA'\) và cách mặt đất \(7\,{\rm{m}}\). Một vật ở vị trí \(M\left( {a;\,b;\,c} \right)\) thoả mãn \(MA = MB = MC = MD = \sqrt {\frac{{697}}{2}} \) thì cách camera \(\frac{{\sqrt {1266} }}{2}{\rm{m}}\).

d) Gọi \(\alpha \) là góc hợp bởi đường thẳng \(A'D'\) và mặt đất. Khi đó \(\cos \alpha  = \frac{1}{{\sqrt {626} }}\,\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \[AA' = 4\,{\rm{m}}\] nên toạ độ \(A'\left( {0;\,0;\,4} \right)\).

b) Đúng. Toạ độ điểm \(D'\left( {25;\,0;\,3} \right)\) nên vectơ chỉ phương \[{\overrightarrow u _{A'D'}} = \overrightarrow {A'D'}  = \left( {25;\,0;\, - 1} \right)\].

Phương trình đường thẳng \(A'D'\) có vectơ chỉ phương \[{\overrightarrow u _{A'D'}} = \left( {25;\,0;\, - 1} \right)\] và đi qua điểm \(A'\left( {0;\,0;\,4} \right)\) là \[\left\{ {\begin{array}{*{20}{c}}{x = 25t}\\{y = 0\,\,\,\,\,\,}\\{z = 4 - t}\end{array}\,\,\,\begin{array}{*{20}{c}}{}\\{,t \in \mathbb{R}}\\{}\end{array}} \right.\].

c) Sai. Điểm \[E\] nằm trên cột \(AA'\) và cách mặt đất 7 m suy ra toạ độ \(E\left( {0;\,0;\,7} \right)\).

Gọi \[I\] là giao điểm của  \[AC\]và \[\;BD\]. Do \(ABCD\) là hình vuông có cạnh \(AB = 25\,{\rm{m}}\) nên điểm \[I\]có toạ độ \(I\left( {\frac{{25}}{2};\frac{{25}}{2};0} \right)\) mà \(MA = MB = MC = MD\), do đó \(I\) là hình chiếu của \(M\) lên mặt phẳng \(\left( {ABCD} \right)\). Suy ra \(M\left( {\frac{{25}}{2};\frac{{25}}{2};c} \right)\)  mà \(MA = \sqrt {\frac{{697}}{2}}  \Leftrightarrow {\left( {\frac{{25}}{2}} \right)^2} + {\left( {\frac{{25}}{2}} \right)^2} + {c^2} = \frac{{697}}{2} \Leftrightarrow c = 6\)

\( \Rightarrow M\left( {\frac{{25}}{2};\frac{{25}}{2};6} \right)\) \( \Rightarrow ME = 17,706\).

d) Sai. Ta có \[\overrightarrow {A'D'}  = \left( {25;\,0;\, - 1} \right)\] và vectơ pháp tuyến của mặt đất là \({\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;\,0;\,1} \right)\) do đó góc hợp với đường thẳng \(A'D'\) và mặt đất là \(\sin \alpha  = \frac{{\left| {25.0 + 0.0 + ( - 1).1} \right|}}{{\sqrt {{{25}^2} + {{( - 1)}^2}} .\sqrt {{1^2}} }} = \frac{1}{{\sqrt {626} }}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\)             \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\)          \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\)      \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c =  - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ  \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + 5 = 0}\\{x - 2y - 3z + 20 = 0}\end{array}} \right.\,\).

Từ phương trình thứ nhất chọn \(x =  - 5 \Rightarrow y = 0\). Thay vào phương trình còn lại ta được \(z = 5\).

Vậy điểm \(A\left( { - 5;0;5} \right)\) là một điểm thuộc đường nóc nhà. Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {Oxy} \right)\) và bằng 5 mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP