Câu hỏi:

24/10/2025 41 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right): - x + 2y + z - 3 = 0\).

a) Điểm \(A\left( {1;\, - 1;\, - 2} \right)\) nằm trên đường thẳng \(d\).

b) Mặt phẳng \(\left( Q \right)\) song song với đường thẳng \(d\) và vuông góc với mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là \(\left( {1;\,1;\, - 1} \right)\).

c) Góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) bằng \(30^\circ \).

d) Đường thẳng \(\Delta \) đi qua điểm \(M\left( { - 3;\,1;\,2} \right)\), song song với mặt phẳng \(\left( P \right)\) và cắt đường thẳng \(d\) tại điểm \(N\left( {a;\,b;\,c} \right)\). Giá trị \(a + b + c\) bằng 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Điểm \(A\left( {1;\, - 1;\, - 2} \right)\) không nằm đường thẳng \(d\) vì \(\frac{{1 - 1}}{2} = \frac{{ - 1 + 1}}{{ - 1}} \ne \frac{{ - 2 - 2}}{1}\).

b) Đúng. Đường thẳng \(d\) có 1 vectơ chỉ phương là \({\overrightarrow u _d} = \left( {2;\, - 1;\,1} \right)\) và mặt phẳng \(\left( P \right)\) có 1 vectơ pháp tuyến là \({\overrightarrow n _{\left( P \right)}} = \left( { - 1;\,2;\,1} \right)\).

Mặt phẳng \(\left( Q \right)\) có 1 vectơ pháp tuyến là \({\overrightarrow n _{\left( Q \right)}} = \left[ {{{\overrightarrow n }_{\left( P \right)}},\,{{\overrightarrow u }_d}} \right] = \left( {1;\,1;\, - 1} \right)\).

c) Đúng. Ta có \(\sin \left( {d,\left( P \right)} \right) = \frac{{\left| {{{\overrightarrow u }_d} \cdot {{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_d}} \right| \cdot \left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{3}{{\sqrt 6  \cdot \sqrt 6 }} = \frac{1}{2}\).

Suy ra \(\left( {d,\left( P \right)} \right) = 30^\circ \).

d) Sai. \(N = \Delta  \cap d\).

\(N \in d \Rightarrow N\left( {1 + 2t;\, - 1 - t;\,2 + t} \right)\).

\(\Delta \) có 1 vectơ chỉ phương là \(\overrightarrow {MN}  = \left( {2t + 4;\, - t - 2;\,t} \right)\).

Ta có \(\Delta \) song song với mặt phẳng \(\left( P \right)\)

Suy ra \(\overrightarrow {MN}  \bot {\overrightarrow n _{\left( P \right)}}\)

\( \Rightarrow \overrightarrow {MN}  \cdot {\overrightarrow n _{\left( P \right)}} = 0\)\( \Rightarrow \left( {2t + 4} \right) \cdot \left( { - 1} \right) + \left( { - t - 2} \right) \cdot 2 + t \cdot 1 = 0\)

Suy ra \(t =  - \frac{8}{3}\).

Vậy \(N\left( { - \frac{{13}}{3};\frac{5}{3};\, - \frac{2}{3}} \right)\).

Suy ra \(a + b + c =  - \frac{{13}}{3} + \frac{5}{3} - \frac{2}{3} =  - \frac{{10}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC}  = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\). 

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là  \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP