Trong không gian với hệ tọa độ \[Oxyz\], một viên đạn được bắn ra từ vị trí \(A\left( {1;2;3} \right)\) hướng đến vị trí \(B\left( {0;1; - 6} \right)\), bia chắn là mặt phẳng \(\left( P \right):4x - y + 2z + 13 = 0\), đơn vị là kilômét.
a) Điểm \(B\) thuộc mặt phẳng \(\left( P \right)\).
b) Giả sử viên đạn chuyển động thẳng đều theo hướng vectơ \(\vec v = \left( { - 2; - 2; - 18} \right)\) với vận tốc 800 m/s (bỏ qua mọi lực cản và chướng ngại vật), sau một phút viên đạn bắn ra đi qua điểm \(B\).
c) Góc giữa đường thẳng \[AB\] và mặt phẳng \(\left( P \right)\) (làm tròn đến hàng đơn vị) là \(60^\circ \).
d) Hình chiếu vuông góc của \(A\) trên \[\left( {Oxy} \right)\] là \(H\left( {0;2;3} \right)\).
Quảng cáo
Trả lời:
a) Đúng. Ta có: \(4.0 - 1 + 2.\left( { - 6} \right) + 13 = 0\) \( \Rightarrow B \in \left( P \right)\).
b) Đúng. \(\overrightarrow {AB} = \left( { - 1; - 1; - 9} \right)\).
Ta thấy \(\overrightarrow v = 2\overrightarrow {AB} \) \( \Rightarrow \) Hướng chuyển động theo vectơ \(\overrightarrow v \) chính là hướng chuyển động từ \(A\) đến \(B\).
\(AB = \sqrt {{1^2} + {1^2} + {9^2}} = \sqrt {83} \left( {{\rm{km}}} \right) = 1000\sqrt {83} \left( {\rm{m}} \right)\).
Suy ra thời gian viên đạn bay từ \(A\) đến \(B\) là: \(\frac{{AB}}{{800}} = \frac{{5\sqrt {83} }}{4} \approx 11,39\) giây.
Do đó sau 1 phút viên đạn đã đi qua điểm \(B\).
c) Sai. \(\overrightarrow {BA} = \left( {1;1;9} \right)\); \(\overrightarrow {{n_{\left( P \right)}}} = \left( {4; - 1;2} \right)\).
\[\sin \left( {AB,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow {BA} ,\overrightarrow {{n_{\left( P \right)}}} } \right)} \right| = \frac{{\left| {\overrightarrow {BA} .\overrightarrow {{n_{\left( P \right)}}} } \right|}}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {{n_{\left( P \right)}}} } \right|}} = \frac{{\left| {4 - 1 + 18} \right|}}{{\sqrt {83} .\sqrt {21} }} = \frac{{\sqrt {1743} }}{{83}}\]\( \Rightarrow \widehat {\left( {AB,\left( P \right)} \right)} \approx 30^\circ \).
d) Sai. Hình chiếu vuông góc của \(A\) trên \(\left( {Oxy} \right)\) là \(H\left( {1;2;0} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + 5 = 0}\\{x - 2y - 3z + 20 = 0}\end{array}} \right.\,\).
Từ phương trình thứ nhất chọn \(x = - 5 \Rightarrow y = 0\). Thay vào phương trình còn lại ta được \(z = 5\).
Vậy điểm \(A\left( { - 5;0;5} \right)\) là một điểm thuộc đường nóc nhà. Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {Oxy} \right)\) và bằng 5 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



