Một mái nhà hình tròn được đặt trên ba cây cột trụ. Các cây cột trụ vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt là \[8{\rm{m}},\,9{\rm{m}},\,10{\rm{m}}\]. Ba chân cột là ba đỉnh của một tam giác đều trên mặt sàn nhà với cạnh dài 8 m. Chọn hệ trục tọa độ như hình vẽ với \(B \in Ox\), \(C \in Oy\), tia \(Oz\) cùng hướng với vectơ \(\overrightarrow {AA'} \). Chọn gốc tọa độ \(O\) trùng với trung điểm của \(AC\) và mỗi đơn vị trên trục có độ dài 1m (xem hình vẽ).

a) Tọa độ các điểm \(A'\left( {0; - 4;10} \right),B'\left( {4\sqrt 3 ;0;9} \right),C'\left( {0;4;8} \right)\).
b) Mặt phẳng \(\left( {ABC} \right)\) nhận \(\overrightarrow k = \left( {0;\,1;\,1} \right)\) làm vectơ pháp tuyến.
c) Mặt phẳng \(\left( {A'B'C'} \right)\) nhận \(\overrightarrow n = \left( {0;1;4} \right)\) làm vectơ pháp tuyến.
d) Biết độ dốc của mái nhà đạt mức tiêu chuẩn khoảng từ \(27^\circ \) đến \(35^\circ \) thì mái nhà trên có độ dốc ở mức tiêu chuẩn.
Quảng cáo
Trả lời:
a) Đúng. \(A\left( {0; - 4;0} \right),B\left( {4\sqrt 3 ;0;0} \right),C\left( {0;4;0} \right)\) và \(A'\left( {0; - 4;10} \right),B'\left( {4\sqrt 3 ;0;9} \right),C'\left( {0;4;8} \right)\).
b) Sai. Vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là \(\overrightarrow k = \left( {0;\,0;\,1} \right).\)
c) Đúng. \[\overrightarrow {A'B'} = \left( {4\sqrt 3 ;4; - 1} \right);\overrightarrow {A'C'} = \left( {0;8; - 2} \right)\], khi đó vectơ pháp tuyến của \(\left( {A'B'C'} \right)\) là:
\(\overrightarrow n = \left[ {\overrightarrow {A'B'} ,\,\overrightarrow {A'C'} } \right] = \left( {0;\,8\sqrt 3 ;\,32\sqrt 3 } \right) = 8\sqrt 3 \left( {0;\,1;\,4} \right)\).
Vậy vectơ pháp tuyến của mặt phẳng \(\left( {A'B'C'} \right)\) là: \(\overrightarrow n = \left( {0;1;4} \right)\).
d) Sai. Vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là: \(\overrightarrow k = \left( {0;\,0;\,1} \right)\).
Khi đó: \[\cos \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = \frac{{\left| 4 \right|}}{{\sqrt {{4^2} + {1^2}} }} = \frac{{4\sqrt {17} }}{{17}}\] nên \(\left( {\left( {ABC} \right),\,\left( {A'B'C'} \right)} \right) \approx 14^\circ \) nên mái nhà không ở mức tiêu chuẩn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).
Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)
Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).
Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC} = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)
Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\).
Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)
Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).
Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).
Thời gian đi quãng đường \[BC\]là \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].
Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.
Đáp án: 1,69.
Lời giải
Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x = - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]
Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).
Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).
Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].
\[\overrightarrow {AM} = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).
\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}} = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k = \pm \sqrt {10} \).
Vì \(k > 0 \Rightarrow k = \sqrt {10} \).
Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c = - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10} = 6\].
Đáp án: 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



