Trong không gian với hệ trục tọa độ \(Oxyz\), có hai trục \(Ox,\;Oy\) đặt trên mặt đất (coi mặt đất là một mặt phẳng); tia \(Oz\) hướng lên phía trên; đơn vị trên các trục tính bằng mét. Một thiết bị phát sóng \(M\)đặt tại điểm \(A\left( {80;60;60} \right)\). Vùng phủ sóng của thiết bị \(M\) có bán kính \(500\) mét. Gọi \(d\) là đường thẳng đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox.\)

a) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên trục \(Oy\)từ vị trí \(B\) theo hướng của vectơ \(\overrightarrow {BO} \). Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,3\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì có thể vào được vùng phủ sóng của thiết bị \[M\].
d) Phương trình tham số của đường thẳng \(d\) là \[\left\{ \begin{array}{l}x = 0\\y = - 490\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Quảng cáo
Trả lời:
a) Sai. Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của thiết bị phát sóng \(M\) trong không gian là mặt cầu \(\left( S \right)\) có tâm \(A\left( {80;60;60} \right)\), bán kính \(500\) có phương trình\({\left( {x - 80} \right)^2} + {\left( {y - 60} \right)^2} + {\left( {z - 60} \right)^2} = {500^2}\).
Gọi \[E\left( {0;t;0} \right)\] là giao điểm của \(Oy\) và \(\left( S \right)\). Khi đó
\[{\left( { - 80} \right)^2} + {\left( {t - 60} \right)^2} + {60^2} = {500^2} \Leftrightarrow {\left( {t - 60} \right)^2} = 240000 \Leftrightarrow \left[ \begin{array}{l}{t_1} = 60 + 200\sqrt 6 \\{t_2} = 60 - 200\sqrt 6 \end{array} \right.\].
Ta có:
\[{t_1} = 60 + 200\sqrt 6 \Rightarrow {E_1}\left( {0;60 + 200\sqrt 6 ;0} \right) \Rightarrow {E_1}B = 550 + 200\sqrt 6 > 60,3\].
\[{t_2} = 60 - 200\sqrt 6 \Rightarrow {E_2}\left( {0;60 - 200\sqrt 6 ;0} \right) \Rightarrow {E_2}B = 550 - 200\sqrt 6 \approx 60,1\].
Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,1\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Đúng. Ta có: \(\overrightarrow {AB} = \left( { - 80\,;\,550\,;\, - 60} \right) \Rightarrow AB = \sqrt {{{\left( { - 80} \right)}^2} + {{550}^2} + {{\left( { - 60} \right)}^2}} > 500 = R\).
Vậy điểm \[B\] nằm ngoài mặt cầu \(\left( S \right)\) nên điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y = - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Suy ra: \(\left[ {\overrightarrow i ,\overrightarrow {AB} } \right] = \left( {0\,;\,60\,;\, - 550} \right)\).
Khoảng cách ngắn nhất từ \(A\left( {80;60;60} \right)\) đường thẳng \(d\) là:
\(d\left( {A;d} \right) = \frac{{\left| {\left[ {\overrightarrow i ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow i } \right|}} = \frac{{\sqrt {{0^2} + {{60}^2} + {{\left( { - 550} \right)}^2}} }}{{\sqrt {{1^2} + {0^2} + {0^2}} }} > 500 = R\).
Vì vậy thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì không thể vào được vùng phủ sóng của thiết bị \[M\].
d) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y = - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).
Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)
Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).
Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC} = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)
Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\).
Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)
Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).
Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).
Thời gian đi quãng đường \[BC\]là \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].
Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.
Đáp án: 1,69.
Lời giải
Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x = - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]
Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).
Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).
Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].
\[\overrightarrow {AM} = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).
\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}} = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k = \pm \sqrt {10} \).
Vì \(k > 0 \Rightarrow k = \sqrt {10} \).
Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c = - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10} = 6\].
Đáp án: 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



