Manhattanhenge (Hình 1) là một sự kiện diễn ra khi Mặt Trời mọc hoặc khi Mặt Trời lặn nằm thẳng hàng với các tuyến phố Đông - Tây thuộc mạng lưới đường phố chính tại quận Manhattan của thành phố New York. Khi mặt trời lặn, tia sáng song song mặt đất lệch một góc khoảng \(38^\circ \) so với hướng tây (Hình 2).
|
|
|
|
Hình 1 |
Hình 2 |
Giả sử mặt tiền các tòa nhà hai bên đường nằm trong 2 mặt phẳng song song cách nhau \(30\)m và vuông góc với mặt đất. Biết rằng mặt phẳng phía bắc đi qua gốc \(O\) của hệ trục \(Oxyz\), với tia \(Oz\) vuông góc với mặt đất và hướng lên trên. Phương trình mặt phẳng thứ hai có dạng \(\left( Q \right):x + ay + bz + c = 0\) với \(c = \frac{m}{{\sin n^\circ }}\). Tính \(m + n\).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Kết nối tri thức Chương 5 có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A,B\) là giao điểm của mp \(\left( Q \right)\) với trục \(Ox\) và \(Oy\), \(H\) là hình chiếu vuông góc của \(O\) lên \(AB\).

Vì khoảng cách giữa hai mặt phẳng bằng \(30\)m nên \(OH = 30\).
Theo giả thiết ta có góc \(\widehat {OAH} = 38^\circ \) nên khi đó \(OA = \frac{{OH}}{{\sin 38^\circ }} = \frac{{30}}{{\sin 38^\circ }}\).
\({x_H} = - OH.\cos 52^\circ = - 30.\cos 52^\circ \), \({y_H} = - OH\cos 38^\circ = - 30\cos 38^\circ \).
Tọa độ điểm \(A\left( { - \frac{{30}}{{\sin 38^\circ }};\,0\,;\,0} \right)\), \(H\left( { - 30\cos 52^\circ ;\, - 30\cos 38^\circ ;0} \right)\) và chọn một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\frac{{\cos 38^\circ }}{{\cos 52^\circ }}\,;\,0} \right)\).
Mặt phẳng \(\left( Q \right)\) đi qua \(A\) vuông góc \(OH\) nhận \(\overrightarrow n \) làm véc tơ pháp tuyến có phương trình:
\(\left( {x + \frac{{30}}{{\sin 38^\circ }}} \right) + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y = 0 \Leftrightarrow x + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y + \frac{{30}}{{\sin 38^\circ }} = 0\).
Vậy \(m + n = 68\).
Đáp án: 68.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x = - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]
Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).
Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).
Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].
\[\overrightarrow {AM} = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).
\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}} = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k = \pm \sqrt {10} \).
Vì \(k > 0 \Rightarrow k = \sqrt {10} \).
Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c = - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10} = 6\].
Đáp án: 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





