Một sân vận động được xây dựng theo mô hình là hình chóp cụt \[OAGD.BCFE\] có hai đáy song song với nhau. Mặt sân \(OAGD\) là hình chữ nhật và được gắn hệ trục \[Oxyz\] như hình vẽ (đơn vị trên mỗi trục tọa độ là mét). Mặt sân \[OAGD\] có chiều dài \[OA = 100\]m, chiều rộng \[OD = 60\]m và tọa độ điểm \[B\left( {10;10;8} \right)\]. Giả sử phương trình tổng quát của mặt phẳng \[\left( {OACB} \right)\] có dạng \[ax + y + cz + d = 0\]. Tính giá trị biểu thức \[a + c + d\].

Quảng cáo
Trả lời:
Gắn hình chóp cụt vào hệ trục \[Oxyz\] ta có:
\[O\left( {0;0;0} \right),\,\,\,A\left( {100;0;0} \right),\,\,\,G\left( {100;60;0} \right),\,\,\,D\left( {0;60;0} \right),\,\,\,B\left( {10;10;8} \right)\].
Do \[\overrightarrow {OA} = \left( {100;0;0} \right),\,\,\overrightarrow {OB} = \left( {10;10;8} \right)\] nên \[\vec n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {0; - 100;1000} \right)\].
Suy ra mặt phẳng \[\left( {OACB} \right)\] có vectơ pháp tuyến là \[\overrightarrow {{n_1}\,} = \left( {0;1; - 10} \right)\].
Phương trình tổng quát của mặt phẳng \[\left( {OACB} \right)\] là \[y - 10z = 0\].
Do đó \[a = 0,\,c = - 10,\,d = 0\]. Vậy \[a + c + d = 0 - 10 + 0 = - 10\].
Đáp án: −10.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + 5 = 0}\\{x - 2y - 3z + 20 = 0}\end{array}} \right.\,\).
Từ phương trình thứ nhất chọn \(x = - 5 \Rightarrow y = 0\). Thay vào phương trình còn lại ta được \(z = 5\).
Vậy điểm \(A\left( { - 5;0;5} \right)\) là một điểm thuộc đường nóc nhà. Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {Oxy} \right)\) và bằng 5 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(z + 2 = 0\).
\(z - 2 = 0\).
\(2x - 3y = 0\).
\(2x - 3y - 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


