Câu hỏi:

24/10/2025 112 Lưu

Một sân vận động được xây dựng theo mô hình là hình chóp cụt \[OAGD.BCFE\] có hai đáy song song với nhau. Mặt sân \(OAGD\) là hình chữ nhật và được gắn hệ trục \[Oxyz\] như hình vẽ (đơn vị trên mỗi trục tọa độ là mét). Mặt sân \[OAGD\] có chiều dài \[OA = 100\]m, chiều rộng \[OD = 60\]m và tọa độ điểm \[B\left( {10;10;8} \right)\]. Giả sử phương trình tổng quát của mặt phẳng \[\left( {OACB} \right)\] có dạng \[ax + y + cz + d = 0\]. Tính giá trị biểu thức \[a + c + d\].

A black background with a black square

Description automatically generated with medium confidence

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gắn hình chóp cụt vào hệ trục \[Oxyz\] ta có:

\[O\left( {0;0;0} \right),\,\,\,A\left( {100;0;0} \right),\,\,\,G\left( {100;60;0} \right),\,\,\,D\left( {0;60;0} \right),\,\,\,B\left( {10;10;8} \right)\].

Do \[\overrightarrow {OA}  = \left( {100;0;0} \right),\,\,\overrightarrow {OB}  = \left( {10;10;8} \right)\] nên \[\vec n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {0; - 100;1000} \right)\].

Suy ra mặt phẳng \[\left( {OACB} \right)\] có vectơ pháp tuyến là \[\overrightarrow {{n_1}\,}  = \left( {0;1; - 10} \right)\].

Phương trình tổng quát của mặt phẳng \[\left( {OACB} \right)\] là \[y - 10z = 0\].

Do đó \[a = 0,\,c =  - 10,\,d = 0\]. Vậy \[a + c + d = 0 - 10 + 0 =  - 10\].

Đáp án: −10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC}  = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\). 

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là  \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP