Câu hỏi:

24/10/2025 34 Lưu

Biết góc quan sát ngang của một camera là \(116^\circ \). Trong không gian \(Oxyz\), camera được đặt tại điểm \(A\left( {2;1;5} \right)\) và chiếu thẳng về phía mặt phẳng \(\left( P \right):2x - y - 2z + 13 = 0\). Hỏi vùng quan sát được trên mặt phẳng \(\left( P \right)\) của camera là hình tròn có đường kính bằng bao nhiêu? (làm tròn kết quả đến chữ số hàng chục).

A camera with a triangle and red dots

Description automatically generated with medium confidence

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A,B,C\) là các điểm như hình vẽ bên dưới và \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( P \right)\).

Hình vẽ minh hoạ

A camera with a triangle and a circle with red dots

Description automatically generated with medium confidence

Theo đề \(\widehat {BAC} = 116^\circ  \Rightarrow \widehat {BAH} = 58^\circ \). Khi đó \(AH = {\rm{d}}\left( {A,\left( P \right)} \right) = \frac{{\left| {2 \cdot 2 - 1 - 2 \cdot 5 + 13} \right|}}{{\sqrt {4 + 1 + 4} }} = 2\) (đvđd).

Xét tam giác \(ABH\) vuông tại \(H\), ta có: \(\tan \widehat {BAH} = \frac{{BH}}{{AH}} \Rightarrow BH = \tan 58^\circ  \cdot 2 = 2\tan 58^\circ \) (đvđd).

Suy ra \(BC = 2BH = 2 \cdot 2\tan 58^\circ  \approx 6,4\)(đvđd).

Vậy vùng quan sát của camera trên mặt phẳng \(\left( P \right)\) là hình tròn có đường kính khoảng \(6,4\) (đvđd).

Đáp án: 6,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC}  = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\). 

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là  \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP