Câu hỏi:

16/10/2025 11 Lưu

Một ô tô xuất phát với vận tốc \({v_1}\left( t \right) = 2t + 12\) (m/s), sau khi đi được khoảng thời gian \({t_1}\) thì bất ngờ gặp chướng ngại vật nên tài xế phanh gấp với vận tốc \({v_2}\left( t \right) = 24 - 6t\)(m/s) và đi thêm một khoảng thời gian \({t_2}\) nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì xe ô tô đã đi được bao nhiêu mét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \({v_1}\left( t \right) = {v_2}\left( t \right) \Leftrightarrow 2t + 12 = 24 - 6t \Leftrightarrow t = 1,5\).

Vậy xe di chuyển với vận tốc \({v_1}\left( t \right) = 2t + 12\) sau 1,5 giây thì phanh gấp.

Có \({v_2}\left( t \right) = 0 \Leftrightarrow 24 - 6t = 0 \Leftrightarrow t = 4\).

Vậy xe di chuyển với vận tốc \({v_2}\left( t \right) = 24 - 6t\) sau 4 giây thì dừng lại.

Quãng đường xe đi được là \(\int\limits_0^{1,5} {{v_1}\left( t \right)dt}  + \int\limits_{1,5}^4 {{v_2}\left( t \right)dt} \)\[ = \left. {\left( {{t^2} + 12t} \right)} \right|_0^{1,5} + \left. {\left( {24t - 3{t^2}} \right)} \right|_{1,5}^4 = 39\] m.

Trả lời: 39.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(v\left( t \right) = s'\left( t \right)\).

b) Có \(s\left( t \right) = \int {v\left( t \right)dt}  = \int {\left( {5 + 3t} \right)dt}  = \int {5dt}  + \int {3tdt}  = \frac{3}{2}{t^2} + 5t + C\).

Vì \(s\left( 0 \right) = 0 \Rightarrow C = 0\).

Do đó \(s\left( t \right) = \frac{3}{2}{t^2} + 5t\).

c) Ta có \(s = \int\limits_0^6 {v\left( t \right)dt}  = \left. {\left( {\frac{3}{2}{t^2} + 5t} \right)} \right|_0^6 = \frac{3}{2}{.6^2} + 5.6 = 84\).

d) Máy bay rời đường băng khi \(t = 35\) giây nên \(s = \int\limits_0^{35} {v\left( t \right)dt}  = \left. {\left( {\frac{3}{2}{t^2} + 5t} \right)} \right|_0^{35} = 2012,5\).

Quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi rời đường băng làm tròn đến hàng đơn vị là 2013 m.

Đáp án: a) Đúng;   b) Sai; c) Sai;    d) Đúng.

Lời giải

Khi máy bay đạt vận tốc 200 m/s, suy ra \({t^2} + 10t = 200 \Leftrightarrow \left[ \begin{array}{l}t = 10\\t =  - 20\end{array} \right.\).

Vì \(t > 0\) nên \(t = 10\).

Quãng đường mãy bay di chuyển trên đường băng là \(\int\limits_0^{10} {\left( {{t^2} + 10t} \right)dt}  = \frac{{2500}}{3} \approx 833\) m.

Trả lời: 833.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP