PHẦN III. TRẢ LỜI NGẮN
Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {{e^x} + 1} \), trục hoành và các đường thẳng \(x = 1\), \(x = 2\). Khối tròn xoay tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu (kết quả làm tròn đến hàng phần chục)?
PHẦN III. TRẢ LỜI NGẮN
Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {{e^x} + 1} \), trục hoành và các đường thẳng \(x = 1\), \(x = 2\). Khối tròn xoay tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu (kết quả làm tròn đến hàng phần chục)?
Quảng cáo
Trả lời:

Thể tích cần tìm là \(V = \pi \int\limits_1^2 {\left( {{e^x} + 1} \right)dx} = \left. {\pi \left( {{e^x} + x} \right)} \right|_1^2 = \pi \left( {{e^2} - e + 1} \right) \approx 17,8\).
Trả lời: 17,8.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \[\int\limits_1^3 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_1^3 = F\left( 3 \right) - F\left( 1 \right)\].
b) \(F\left( x \right) = \int {\left( {{x^2} + 2x} \right)dx} = \frac{{{x^3}}}{3} + {x^2} + C\).
Mà \(F\left( 0 \right) = 1 \Rightarrow C = 1\). Do đó \(F\left( x \right) = \frac{{{x^3}}}{3} + {x^2} + 1\).
Vậy \(F\left( 2 \right) = \frac{{{2^3}}}{3} + {2^2} + 1 = \frac{{23}}{3}\).
c) \[\int\limits_0^2 {kf\left( x \right)dx} = 2\]\[ \Leftrightarrow k\int\limits_0^2 {\left( {{x^2} + 2x} \right)dx} = 2\]\[ \Leftrightarrow \left. {k\left( {\frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^2 = 2\]\[ \Leftrightarrow \frac{{20k}}{3} = 2\]\[ \Leftrightarrow k = \frac{3}{{10}}\].
d) \[\int\limits_1^3 {\frac{{f\left( x \right)}}{{{x^2}}}dx} = \int\limits_1^3 {\frac{{{x^2} + 2x}}{{{x^2}}}dx} \]\[ = \int\limits_1^3 {\left( {1 + \frac{2}{x}} \right)dx} \]\[ = \left. {\left( {x + 2\ln x} \right)} \right|_1^3\]\[ = 2 + 2\ln 3\].
Suy ra a = 2; b = 3. Do đó \(3a - 5b = - 9\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Câu 2
Lời giải
Chọn B
Ta có \(F\left( x \right) = \int {\sin xdx} = - \cos x + C\).
Vì \(F\left( 0 \right) = 1\) nên \( - \cos 0 + C = 1 \Rightarrow C = 2\).
Khi đó \(F\left( x \right) = - \cos x + 2\). Do đó \(F\left( {\frac{\pi }{2}} \right) = - \cos \frac{\pi }{2} + 2 = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.