Một ô tô đang chạy với vận tốc \[10m/s\] thì gặp chướng ngại vật, người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\left( {m/s} \right)\], trong đó \[t\] là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường (m) ô tô di chuyển được trong \[8\] giây cuối cùng.
Một ô tô đang chạy với vận tốc \[10m/s\] thì gặp chướng ngại vật, người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\left( {m/s} \right)\], trong đó \[t\] là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường (m) ô tô di chuyển được trong \[8\] giây cuối cùng.
Quảng cáo
Trả lời:
Ta có \[ - 2t + 10 = 0 \Leftrightarrow t = 5 \Rightarrow \] Thời gian tính từ lúc bắt đầu đạp phanh đến khi dừng hẳn là \[5\] giây.
Vậy trong \[8\] giây cuối cùng thì có \[3\] giây ô tô chuyển động với vận tốc \[10m/s\] và \[5\] giây chuyển động chậm dần đều với vận tốc \[v\left( t \right) = - 2t + 10\left( {m/s} \right)\].
Khi đó quãng đường ô tô di chuyển là \[S = 3.10 + \int\limits_0^5 {\left( { - 2t + 10} \right)} dt = 30 + 25 = 55m\].
Trả lời: 55.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ, hình dạng khung trại là parabol có phương trình \(y = f\left( x \right) = a{x^2} + bx + c\), vì đỉnh trại cao 3m và bề ngang rộng 3m nên parabol đi qua điểm \(\left( {0;3} \right)\) và \(\left( {\frac{3}{2};0} \right)\).
Ta có : \[\left\{ \begin{array}{l}b = 0\\3 = c\\0 = a.{\left( {\frac{3}{2}} \right)^2} + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 0\\a = - \frac{4}{3}\\c = 3\end{array} \right.\]
Suy ra parabol có phương trình \(y = f\left( x \right) = - \frac{4}{3}{x^2} + 3\).
Mỗi mặt phẳng vuông góc \[Ox\] tại điểm có hoành độ \[x,\,0 \le x \le h\] cắt khối chóp theo mặt cắt là hình chữ nhật có độ dài các cạnh lần lượt là \[5\] và \[\,\left| {f\left( x \right)} \right|\], có diện tích \(S\left( x \right) = 5.\left| {f\left( x \right)} \right|\) , với \( - \frac{3}{2} \le x \le \frac{3}{2}\).
Vậy thể tích phần không gian trong trại là \(V = \int_{ - \frac{3}{2}}^{\frac{3}{2}} {5.\left| {f\left( x \right)} \right|} dx = 5.\int_{ - \frac{3}{2}}^{\frac{3}{2}} {\left| { - \frac{4}{3}{x^2} + 3} \right|dx = 30\,\,\,{m^3}} \).
Trả lời: 30.
Câu 2
Lời giải
Chọn B
Ta có \(V = \pi \int\limits_0^5 {{{\left( {\sqrt {2x} + 2} \right)}^2}dx} = \pi \int\limits_0^5 {\left( {2x + 4\sqrt {2x} + 4} \right)dx} \)
\( = \left. {\pi \left( {{x^2} + 4\sqrt 2 .\frac{2}{3}{x^{\frac{3}{2}}} + 4x} \right)} \right|_0^5 = \pi \left( {45 + \frac{{40\sqrt {10} }}{3}} \right) \approx 274\) cm3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


