Cho hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) với \(\frac{C}{D}\) khác 0 thì
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(\frac{A}{B}:\frac{C}{D} = \frac{A}{B} \cdot \frac{D}{C} = \frac{{A \cdot D}}{{B \cdot C}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai.
Ta có: \(B = \frac{{x + 2}}{{x - 1}} \cdot \frac{1}{{{x^2} + x + 1}} = \frac{{x + 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x + 2}}{{{x^3} - 1}}.\) Vậy \(B = \frac{{x + 2}}{{{x^3} - 1}}\) với \(x \ne 2;\;\,x \ne - 2;\;\,x \ne 1.\)
b) Đúng.
Ta có: \(A \cdot B = \left( {{x^3} - 1} \right) \cdot \frac{1}{{{x^2} - 4}} \cdot \frac{{x + 2}}{{{x^3} + 1}} = \frac{{\left( {{x^3} - 1} \right)\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^3} - 1} \right)}} = \frac{1}{{x - 2}}.\)
Vậy \(A \cdot B = \frac{1}{{x - 2}}\) với \(x \ne 2;\;\,x \ne - 2;\;\,x \ne 1.\)
c) Sai.
Với \(x = 4\) (thỏa mãn) ta có: \(A \cdot B = \frac{1}{{4 - 2}} = \frac{1}{2}.\) Vậy với \(x = 4\) thì \(A \cdot B = \frac{1}{2}.\)
d) Sai.
Với \(A \cdot B = 1\) thì \(\frac{1}{{x - 2}} = 1\) nên \(x - 2 = 1\) suy ra \(x = 3\) (thỏa mãn). Vậy có một giá trị của \(x\) để \(A \cdot B = 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.