Cho hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) với \(\frac{C}{D}\) khác 0 thì
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(\frac{A}{B}:\frac{C}{D} = \frac{A}{B} \cdot \frac{D}{C} = \frac{{A \cdot D}}{{B \cdot C}}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(2\)
Với \(x \ne - y;\;x \ne y\) ta có:
\(\frac{{{x^3} - {y^3}}}{{x + y}}:\frac{{{x^2} + xy + {y^2}}}{{2x + 2y}} \cdot \frac{1}{{x - y}}\)
\( = \frac{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}{{x + y}} \cdot \frac{{2\left( {x + y} \right)}}{{{x^2} + xy + {y^2}}} \cdot \frac{1}{{x - y}}\)
\( = \frac{{2\left( {x + y} \right)\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}{{\left( {x + y} \right)\left( {{x^2} + xy + {y^2}} \right)\left( {x - y} \right)}}\)
\( = 2.\)
Vậy kết quả của phép tính đã cho là 2.
Lời giải
Đáp án: \( - 220\)
Với \(x \ne y;\;\,x \ne - y\) ta có:
\(P = \left( {\frac{{x + y}}{{xy}} - \frac{2}{y}} \right) \cdot \frac{{{x^2}{y^2}}}{{{x^2} - {y^2}}} = \frac{{x + y - 2x}}{{xy}} \cdot \frac{{{x^2}{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{ - \left( {x - y} \right){x^2}{y^2}}}{{xy\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{ - xy}}{{x + y}}.\)
Với \(x = - 22;\;\,y = 20\) (thỏa mãn) ta có: \(P = \frac{{ - \left( { - 22} \right) \cdot 20}}{{\left( { - 22} \right) + 20}} = - 220.\)
Vậy với \(x = - 22;\;\,y = 20\) thì \(P = - 220.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.