Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = 12{x^2} + 2,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3\). Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\). Tính \(F\left( 1 \right)\).
Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = 12{x^2} + 2,\forall x \in \mathbb{R}\) và \(f\left( 1 \right) = 3\). Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\). Tính \(F\left( 1 \right)\).
Quảng cáo
Trả lời:

Ta có \(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\left( {12{x^2} + 2} \right)dx} = 4{x^3} + 2x + C\).
Mà \(f\left( 1 \right) = 3 \Rightarrow C = - 3\). Do đó \(f\left( x \right) = 4{x^3} + 2x - 3\).
Lại có \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {4{x^3} + 2x - 3} \right)dx} = {x^4} + {x^2} - 3x + C\).
Mà \(F\left( 0 \right) = 2 \Rightarrow C = 2\). Do đó \(F\left( x \right) = {x^4} + {x^2} - 3x + 2\).
Vậy \(F\left( 1 \right) = {1^4} + {1^2} - 3.1 + 2 = 1\).
Trả lời: 1.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(f'\left( { - 1} \right) = 2.{\left( { - 1} \right)^2} - \left( { - 1} \right) - 3 = 0\).
b) \(f\left( x \right) = \int {\left( {2{x^2} - x - 3} \right)dx} = \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} - 3x + C\).
Vì tiếp tuyến của \(F\left( x \right)\) tại \(M\left( {0;2} \right)\)có hệ số góc bằng 0 nên f(0) = 0 \( \Rightarrow C = 0\).
Do đó \(f\left( x \right) = \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} - 3x\).
c) \(f\left( 2 \right) = \frac{2}{3}{.2^3} - \frac{{{2^2}}}{2} - 3.2 = - \frac{8}{3}\).
d) \(F\left( x \right) = \int {\left( {\frac{2}{3}{x^3} - \frac{{{x^2}}}{2} - 3x} \right)dx} = \frac{{{x^4}}}{6} - \frac{{{x^3}}}{6} + 3.\frac{{{x^2}}}{2} + C\).
Mà \(F\left( 0 \right) = 2 \Rightarrow C = 2\). Do đó \(F\left( x \right) = \frac{{{x^4}}}{6} - \frac{{{x^3}}}{6} + 3.\frac{{{x^2}}}{2} + 2\).
Do đó \(F\left( 1 \right) = \frac{{{1^4}}}{6} - \frac{{{1^3}}}{6} + 3.\frac{{{1^2}}}{2} + 2 = \frac{7}{2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
a) Ta có \(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( { - 10t + 30dt} \right) = - 5{t^2} + 30t + C} \).
Do \(s\left( 0 \right) = 0\) nên C = 0.
Vậy \(s\left( t \right) = - 5{t^2} + 30t\) (m).
b) Xe ô tô dừng hẳn khi \(v\left( t \right) = 0 \Leftrightarrow - 10t + 30 = 0 \Leftrightarrow t = 3\).
c) Sau 3 giây kể từ lúc đạp phanh, quãng đường xe ô tô di chuyển được là
\(s\left( 3 \right) = - {5.3^2} + 30.3 = 45\) m.
d) Ta có 72 km/h = 20 m/s.
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là 20 + 45 = 65 (m).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.