Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{{\sqrt[4]{{{x^3}}}}} + 2\;\;khi\;x \ge 1\\{x^2} + x + 1\;\;khi\;x < 1\end{array} \right.\). Biết tích phân \(\int\limits_{ - 1}^{16} {f\left( x \right)dx} = \frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản, b > 0). Tính tổng a + b.
Quảng cáo
Trả lời:
Chọn B
\(\int\limits_{ - 1}^{16} {f\left( x \right)dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^{16} {f\left( x \right)dx} \)\( = \int\limits_{ - 1}^1 {\left( {{x^2} + x + 1} \right)dx} + \int\limits_1^{16} {\left( {\frac{1}{{\sqrt[4]{{{x^3}}}}} + 2} \right)dx} \)
\( = \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x} \right)} \right|_{ - 1}^1 + \left. {\left( {4\sqrt[4]{x} + 2x} \right)} \right|_1^{16}\)\( = \frac{8}{3} + 34 = \frac{{110}}{3}\).
Suy ra \(a = 110;b = 3\). Do đó \(a + b = 113\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\int\limits_0^2 {f\left( x \right)dx} = F\left( 2 \right) - F\left( 0 \right)\)\( \Rightarrow F\left( 2 \right) = \int\limits_0^2 {f\left( x \right)dx} + F\left( 0 \right) = 3 + 2 = 5\).
Trả lời: 5.
Lời giải
a) \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = \int\limits_{ - 1}^0 {f\left( x \right)dx} + \int\limits_0^1 {f\left( x \right)dx} \)\( = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_0^1 {f\left( x \right)dx} = 2\int\limits_0^1 {f\left( x \right)dx} = 2.5 = 10\).
b) \(\int\limits_{ - 1}^1 {g\left( x \right)dx} = \int\limits_{ - 1}^0 {g\left( x \right)dx} + \int\limits_0^1 {g\left( x \right)dx} \)\( = - \int\limits_0^1 {g\left( x \right)dx} + \int\limits_0^1 {g\left( x \right)dx} = 0\).
c) \(\int\limits_{ - 1}^1 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_{ - 1}^1 {g\left( x \right)dx} = 10\).
d) \(\int\limits_{ - 1}^1 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_{ - 1}^1 {g\left( x \right)dx} = 10\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.