Câu hỏi:

17/10/2025 91 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên

Đáp án: a) Sai;   b) Đúng;    c) Đúng; d) Đúng. (ảnh 1)

a) \(\int\limits_1^2 {f'\left( x \right)dx} = 1\).

b) \(\int\limits_1^4 {\left[ {3 + f'\left( x \right)} \right]dx} = f\left( 4 \right) + 3\).

c) \(\int\limits_1^2 {\left| {f'\left( x \right)} \right|dx} = f\left( 1 \right) - f\left( 2 \right)\).

d) Nếu \(\int\limits_1^4 {\left| {f'\left( x \right)} \right|dx} = 5\) thì \(f\left( 4 \right) = 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\int\limits_1^2 {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_1^2 = f\left( 2 \right) - f\left( 1 \right) =  - 1 - 0 =  - 1\).

b) \(\int\limits_1^4 {\left[ {3 + f'\left( x \right)} \right]dx}  = \left. {3x} \right|_1^4 + \left. {f\left( x \right)} \right|_1^4 = 12 - 3 + f\left( 4 \right) - f\left( 1 \right) = 9 + f\left( 4 \right)\).

c) \(\int\limits_1^2 {\left| {f'\left( x \right)} \right|dx}  =  - \int\limits_1^2 {f'\left( x \right)dx}  = \left. { - f\left( x \right)} \right|_1^2 =  - f\left( 2 \right) + f\left( 1 \right)\).

d) \(\int\limits_1^4 {\left| {f'\left( x \right)} \right|dx}  = 5\)\( \Leftrightarrow \int\limits_1^2 {\left| {f'\left( x \right)} \right|dx}  + \int\limits_2^4 {\left| {f'\left( x \right)} \right|dx}  = 5\)\[ \Leftrightarrow  - f\left( 2 \right) + f\left( 1 \right) + \left. {f\left( x \right)} \right|_2^4 = 5\]\[ \Leftrightarrow  - f\left( 2 \right) + f\left( 1 \right) + f\left( 4 \right) - f\left( 2 \right) = 5\]\[ \Leftrightarrow 1 + 0 + f\left( 4 \right) + 1 = 5 \Leftrightarrow f\left( 4 \right) = 3\].

Đáp án: a) Sai;   b) Sai;   c) Đúng;  d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\int\limits_0^2 {f\left( x \right)dx}  = F\left( 2 \right) - F\left( 0 \right)\)\( \Rightarrow F\left( 2 \right) = \int\limits_0^2 {f\left( x \right)dx}  + F\left( 0 \right) = 3 + 2 = 5\).

Trả lời: 5.

Lời giải

\(\left\{ \begin{array}{l}\int\limits_2^7 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]dx}  = 2\\\int\limits_2^7 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]dx}  = 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2\int\limits_2^7 {f\left( x \right)dx}  + 3\int\limits_2^7 {g\left( x \right)dx}  = 2\\\int\limits_2^7 {f\left( x \right)dx}  - 2\int\limits_2^7 {g\left( x \right)dx}  = 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\int\limits_2^7 {f\left( x \right)dx}  = \frac{{16}}{7}\\\int\limits_2^7 {g\left( x \right)dx}  =  - \frac{6}{7}\end{array} \right.\).

Do đó \(\int\limits_2^7 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)\( = \int\limits_2^7 {f\left( x \right)dx}  - \int\limits_2^7 {g\left( x \right)dx}  = \frac{{16}}{7} + \frac{6}{7} = \frac{{22}}{7} \approx 3,14\).

Trả lời: 3,14.

Câu 3

A. 5.                                   
B. 36.                            
C. 4.                                                                             
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 2.                                   
B. 6.                              
C. −2.                                                                           
D. −6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{152}}{3}\).       
B. \(\frac{{64}}{3}\).    
C. \(\frac{{ - 64}}{3}\).                           
D. \(\frac{{ - 152}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP