Trong không gian Oxyz, cho M(−2; −4; 3) và (P): 2x – y + 2z – 3 = 0, (Q): 2x – y + 2z – 6 = 0.
a) d(M, (P)) = 2.
b) M cách đều hai mặt phẳng (P) và (Q).
c) d((P), (Q)) = 1.
d) (α) song song và cách (Q) một khoảng bằng 2 có phương trình là (α): 2x – y + 2z – 9 = 0.
Trong không gian Oxyz, cho M(−2; −4; 3) và (P): 2x – y + 2z – 3 = 0, (Q): 2x – y + 2z – 6 = 0.
a) d(M, (P)) = 2.
b) M cách đều hai mặt phẳng (P) và (Q).
c) d((P), (Q)) = 1.
d) (α) song song và cách (Q) một khoảng bằng 2 có phương trình là (α): 2x – y + 2z – 9 = 0.
Quảng cáo
Trả lời:
a) \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.\left( { - 2} \right) + 4 + 2.3 - 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{3}{3} = 1\).
b) \(d\left( {M,\left( Q \right)} \right) = \frac{{\left| {2.\left( { - 2} \right) + 4 + 2.3 - 6} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 0 \Rightarrow M \in \left( Q \right)\).
c) Ta có \(d\left( {\left( P \right),\left( Q \right)} \right) = d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.\left( { - 2} \right) + 4 + 2.3 - 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 1\).
d) Vì \(d\left( {\left( \alpha \right),\left( Q \right)} \right) = 2\) nên \(d\left( {M,\left( \alpha \right)} \right) = 2 \Leftrightarrow \frac{{\left| {2.\left( { - 2} \right) + 4 + 2.3 + D} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 2 \Leftrightarrow D = 0\).
Vậy (α): 2x – y + 2z = 0.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Mặt phẳng đi qua M và song song với mặt phẳng (P) nhận \(\overrightarrow {{n_P}} = \left( {3; - 2;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3\left( {x - 2} \right) - 2\left( {y + 1} \right) + \left( {z - 4} \right) = 0\) Û 3x – 2y + z – 12 = 0.
Lời giải
Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.
Phương trình mặt phẳng (P): \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Ta có OA + OB + OC = a + b + c.
Vì M(1; 4; 9) Î (P) \( \Rightarrow \frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\).
Ta có \(\left( {\frac{1}{a} + \frac{4}{b} + \frac{9}{c}} \right)\left( {a + b + c} \right) \ge {\left( {1 + 2 + 3} \right)^2}\)Þ \(a + b + c \ge 36\).
Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}\frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\\\frac{1}{a} = \frac{2}{b} = \frac{3}{c}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 12\\c = 18\end{array} \right.\).
Khi đó phương trình mặt phẳng (P): \(\frac{x}{6} + \frac{y}{{12}} + \frac{z}{{18}} = 1\)\( \Leftrightarrow 6x + 3y + 2z - 36 = 0\).
Vậy \(d\left( {O,\left( P \right)} \right) = \frac{{\left| { - 36} \right|}}{{\sqrt {36 + 9 + 4} }} = \frac{{36}}{7} \approx 5,14\).
Trả lời: 5,14.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.