Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(1; 0; 2), C(2; 1; 3) và mặt phẳng (P): x – y + 2z + 7 = 0.
a) Mặt phẳng (ABC) có một vectơ pháp tuyến là (2; 1; 1).
b) Mặt phẳng (ABC) đi qua điểm M(3; 1; 5).
c) Mặt phẳng (ABC) vuông góc với mặt phẳng (P).
d) Khoảng cách từ điểm A đến mặt phẳng (P) bằng 6.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(1; 0; 2), C(2; 1; 3) và mặt phẳng (P): x – y + 2z + 7 = 0.
a) Mặt phẳng (ABC) có một vectơ pháp tuyến là (2; 1; 1).
b) Mặt phẳng (ABC) đi qua điểm M(3; 1; 5).
c) Mặt phẳng (ABC) vuông góc với mặt phẳng (P).
d) Khoảng cách từ điểm A đến mặt phẳng (P) bằng 6.
Quảng cáo
Trả lời:

a) Ta có \(\overrightarrow {AB} = \left( {0; - 2;2} \right),\overrightarrow {BC} = \left( {1;1;1} \right)\) \( \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {BC} } \right] = \left( { - 4;2;2} \right) = 2\left( { - 2;1;1} \right) = 2\overrightarrow n \).
Suy ra mặt phẳng (ABC) có một vectơ pháp tuyến \(\overrightarrow n = \left( { - 2;1;1} \right)\).
b) Phương trình mặt phẳng (ABC): \( - 2\left( {x - 1} \right) + \left( {y - 2} \right) + z = 0 \Leftrightarrow - 2x + y + z = 0\).
Thay tọa độ điểm M(3; 1; 5) vào phương trình mặt phẳng (ABC), ta được −2.3 + 1 + 5 = 0 (đúng).
Vậy mặt phẳng (ABC) đi qua điểm M.
c) Ta có vectơ pháp tuyến của mặt phẳng (P): \(\overrightarrow {{n_P}} = \left( {1; - 1;2} \right)\).
Vì \(\overrightarrow {{n_p}} .\overrightarrow n = - 2.1 - 1.1 + 1.2 = - 1 \ne 0\) nên mặt phẳng (ABC) không vuông góc với mặt phẳng (P).
d) Ta có \(d\left( {A,\left( P \right)} \right) = \frac{{\left| {1 - 2 + 2.0 + 7} \right|}}{{\sqrt {1 + 1 + 4} }} = \sqrt 6 \).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.
Phương trình mặt phẳng (P): \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Ta có OA + OB + OC = a + b + c.
Vì M(1; 4; 9) Î (P) \( \Rightarrow \frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\).
Ta có \(\left( {\frac{1}{a} + \frac{4}{b} + \frac{9}{c}} \right)\left( {a + b + c} \right) \ge {\left( {1 + 2 + 3} \right)^2}\)Þ \(a + b + c \ge 36\).
Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}\frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\\\frac{1}{a} = \frac{2}{b} = \frac{3}{c}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 12\\c = 18\end{array} \right.\).
Khi đó phương trình mặt phẳng (P): \(\frac{x}{6} + \frac{y}{{12}} + \frac{z}{{18}} = 1\)\( \Leftrightarrow 6x + 3y + 2z - 36 = 0\).
Vậy \(d\left( {O,\left( P \right)} \right) = \frac{{\left| { - 36} \right|}}{{\sqrt {36 + 9 + 4} }} = \frac{{36}}{7} \approx 5,14\).
Trả lời: 5,14.
Lời giải
a) Ta có \(\overrightarrow {AB} = \left( {0; - 3;2} \right),\overrightarrow {AC} = \left( {1; - 2;1} \right)\). Hai vectơ này không cùng phương.
Do đó ba điểm A, B, C không thẳng hàng.
b) Do ba điểm A, B, C không thẳng hàng nên tồn tại một mặt phẳng duy nhất qua ba điểm này.
c) Ta có mặt phẳng (ABC) có một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;2;3} \right)\).
d) Mặt phẳng (ABC) đi qua điểm A(1; 1; 1) và nhận vectơ \(\overrightarrow n = \left( {1;2;3} \right)\) làm một vectơ pháp tuyến có phương trình là \(\left( {x - 1} \right) + 2\left( {y - 1} \right) + 3\left( {z - 1} \right) = 0\) \( \Leftrightarrow x + 2y + 3z - 6 = 0\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Trong không gian Oxyz, cho mặt phẳng (P): 3x + y – z – 12 = 0.
a) Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;1; - 1} \right)\).
b) Mặt phẳng (P) đi qua điểm A(5; 3; −6).
c) Cho điểm M(a; b; 1) thuộc mặt phẳng (P). Khi đó 3a + b = −13.
d) (P) cắt trục Ox tại A, cắt trục Oz tại B. Diện tích tam giác OAB bằng 12.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Trong không gian Oxyz, cho mặt phẳng (P): 3x + y – z – 12 = 0.
a) Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;1; - 1} \right)\).
b) Mặt phẳng (P) đi qua điểm A(5; 3; −6).
c) Cho điểm M(a; b; 1) thuộc mặt phẳng (P). Khi đó 3a + b = −13.
d) (P) cắt trục Ox tại A, cắt trục Oz tại B. Diện tích tam giác OAB bằng 12.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.