C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.
Biết tập giá trị của hàm số \(y = 5 + 4\sin 2x\cos 2x\) là \(T = \left[ {a\,;b} \right]\). Tính \(a + b\).
C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.
Biết tập giá trị của hàm số \(y = 5 + 4\sin 2x\cos 2x\) là \(T = \left[ {a\,;b} \right]\). Tính \(a + b\).
Quảng cáo
Trả lời:
Hàm số có tập xác định \(D = \mathbb{R}\).
Ta có \(y = 5 + 4\sin 2x\cos 2x = 5 + 2\sin 4x\).
Do \( - 1 \le \sin 4x \le 1 \Leftrightarrow - 2 \le 2\sin 4x \le 2 \Leftrightarrow 3 \le 5 + 2\sin 4x \le 7 \Leftrightarrow 3 \le y \le 7\).
Suy ra tập giá trị của hàm số là \(T = \left[ {3\,;7} \right]\).
Vậy \(a + b = 3 + 7 = 10\).
Đáp án: 10.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi E và F lần lượt là trung điểm AB và CD.
Ta có \(I = BM \cap CN\)\( \Rightarrow \left\{ \begin{array}{l}I \in BM \subset \left( {SAB} \right)\\I \in CN \subset \left( {SCD} \right)\end{array} \right. \Rightarrow I \in \left( {SAB} \right) \cap \left( {SCD} \right).\)
Mà \(S \in \left( {SAB} \right) \cap \left( {SCD} \right)\). Do đó \(\left( {SAB} \right) \cap \left( {SCD} \right) = SI.\)
Ta có: \(\left. \begin{array}{l}AB{\rm{//}}CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\\left( {SAB} \right) \cap \left( {SCD} \right) = SI\end{array} \right\} \Rightarrow SI\,{\rm{//}}\,AB\,{\rm{//}}\,CD\).
Vì \(SI{\rm{//}}CD\) nên \(SI\,{\rm{//}}\,CF\).
Theo định lý Thalès ta có: \(\frac{{SI}}{{CF}} = \frac{{SN}}{{NF}} = 2\) (do \(N\) là trọng tâm tam giác \(SCD\)).
Suy ra \(SI = 2CF = CD\) (do F lần lượt là trung điểm của CD). Vậy \(\frac{{SI}}{{CD}} = 1\).
Đáp án: 1.
Lời giải
Từ đề bài ta suy ra được mỗi tháng bạn Vân trích ra \(4 \cdot 30\% = 1,2\) triệu đồng để gửi tiết kiệm.
Tháng 9/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{24}} = 1,2{\left( {1 + 0,004} \right)^{24}}\).
Tháng 10/2023 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \({u_{23}} = 1,2{\left( {1 + 0,004} \right)^{23}}\).
…
Tháng 8/2025 bạn Vân gửi 1,2 triệu đồng với lãi suất 0,4% mỗi tháng thì đến hết tháng 8/2025 thì số tiền bạn nhận được là: \[{u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\].
Số tiền bạn Vân nhận được khi gửi tiết kiệm như thế tạo thành một cấp số nhân với số hạng đầu \({u_1} = 1,2\left( {1 + 0,004} \right) = 1,2048\) và công bội \(q = 1,004\).
Vậy tổng số tiền bạn Vân nhận được chính là tổng 24 số hạng đầu của một cấp số nhân ở trên.
\({S_{24}} = \frac{{{u_1}\left( {1 - {q^{24}}} \right)}}{{1 - q}} = \frac{{1,2048\left( {1 - 1,{{004}^{24}}} \right)}}{{1 - 1,004}} \approx 30,285148\) (triệu đồng).
Vậy số tiền bạn Vân nhận được đến hết tháng 8/2025 là 30 285 148 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.