Câu hỏi:

18/10/2025 129 Lưu

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

A. \(y = {\tan ^2}x\).             

B. \(y = \cos 3x \cdot \sin x\).      
C. \(y = \cos x + \sin x\).   
D. \(y = \cos x \cdot {\sin ^2}x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một hàm số có đồ thị đối xứng qua gốc tọa độ khi nó là hàm số lẻ.

Xét hàm số \(y = f\left( x \right) = \cos 3x \cdot \sin x\).

Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó nếu \(x\) thuộc tập xác định \(D\) thì \( - x\) cũng thuộc tập xác định \(D\).

Ta có \(f\left( { - x} \right) = \cos \left( { - 3x} \right) \cdot \sin \left( { - x} \right) = \cos 3x \cdot \left( { - \sin x} \right) = - \cos 3x \cdot \sin x = - f\left( x \right),\,\,\forall x \in D\).

Vậy hàm số \(y = \cos 3x \cdot \sin x\) là hàm số lẻ nên đồ thị của nó đối xứng qua gốc tọa độ. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \[S.ABCD\] có cạn (ảnh 1)

a) Đúng. Ta có \(S \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Lại có \(H \in AB \subset \left( {SAB} \right)\)\(H \in \left( {SHC} \right)\) nên \(H \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SHC} \right)\)\(SH\).

b) Sai. \(\frac{{AM}}{{AD}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow MN{\rm{//}}AB{\rm{//}}CD\) \(G \in \left( {GMN} \right) \cap \left( {SAB} \right)\) nên giao tuyến của mặt phẳng \(\left( {GMN} \right)\) và mặt phẳng \(\left( {SAB} \right)\) là đường thẳng đi qua \(G\) và song song với \(AB\) hoặc \(MN\).

c) Đúng. \(\frac{{HG}}{{HS}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow GN{\rm{//}}SC \Rightarrow GN{\rm{//}}\left( {SCD} \right)\).

d) Sai.

Cho hình chóp \[S.ABCD\] có cạn (ảnh 2)

Chọn mặt phẳng \(\left( {SHC} \right)\) chứa đường thẳng \(NG\).

Ta tìm được giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\,\,{\rm{v\`a }}\,\,\left( {SHC} \right)\)\(SE\) như hình vẽ trên (với \(E\) là giao điểm của \(AD\)\(HC\)). Gọi \(P\) là giao điểm của \(NG\)\(SE\) thì \(P\) là giao điểm của đường thẳng \(NG\) và mặt phẳng \(\left( {SAD} \right)\).

Qua \(G\) kẻ \(GQ{\rm{//}}AB\,\,\left( {Q \in SA} \right)\) ta có: \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}}\).

Lại có \(MN = \frac{2}{3}AB = \frac{4}{3}HA \Rightarrow HA = \frac{3}{4}MN\) \( \Rightarrow GQ = \frac{2}{3}HA = \frac{1}{2}MN \Rightarrow \frac{{GQ}}{{MN}} = \frac{1}{2}\).

Suy ra \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}} = \frac{1}{2} \Rightarrow \frac{{PG}}{{GN}} = 1\).

Cách khác: Dễ dàng tính được \(\frac{{EN}}{{EC}} = \frac{{EP}}{{ES}} = \frac{2}{3}\); \(\frac{{NH}}{{HE}} = \frac{1}{3}\).

Áp dụng định lý Menelaus trong tam giác \(NEP\) ta có: \(\frac{{NH}}{{HE}} \cdot \frac{{ES}}{{SP}} \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{1}{3} \cdot 3 \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{{PG}}{{GN}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP