Câu hỏi:

18/10/2025 172 Lưu

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

A. \(y = {\tan ^2}x\).             

B. \(y = \cos 3x \cdot \sin x\).      
C. \(y = \cos x + \sin x\).   
D. \(y = \cos x \cdot {\sin ^2}x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một hàm số có đồ thị đối xứng qua gốc tọa độ khi nó là hàm số lẻ.

Xét hàm số \(y = f\left( x \right) = \cos 3x \cdot \sin x\).

Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó nếu \(x\) thuộc tập xác định \(D\) thì \( - x\) cũng thuộc tập xác định \(D\).

Ta có \(f\left( { - x} \right) = \cos \left( { - 3x} \right) \cdot \sin \left( { - x} \right) = \cos 3x \cdot \left( { - \sin x} \right) = - \cos 3x \cdot \sin x = - f\left( x \right),\,\,\forall x \in D\).

Vậy hàm số \(y = \cos 3x \cdot \sin x\) là hàm số lẻ nên đồ thị của nó đối xứng qua gốc tọa độ. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình (ảnh 1)

a) Xét hai mặt phẳng \(\left( {MBC} \right)\)\(\left( {SAD} \right)\)zCY|

\(M\) là điểm chung, \(BC{\rm{ // }}AD,\) \(BC \subset \left( {MBC} \right),\) \(AD \subset \left( {SAD} \right).\)

Vậy giao tuyến của \(\left( {MBC} \right)\)\(\left( {SAD} \right)\) là đường thẳng \(Mx\) song song với \(BC\)\(AD.\)

b) Do \(BC{\rm{ // }}AD\) nên \(\Delta GBC\)\(\Delta GDA\) đồng dạng (góc – góc).

Suy ra|P|B|0|4|8| \(\frac{{DG}}{{GB}} = \frac{{AD}}{{BC}} = \frac{2}{1} \Rightarrow \frac{{DG}}{{DB}} = \frac{2}{3}.\)

Do \(DE\) là trung tuyến của \(\Delta SAD\)\(M\) là trọng tâm \(\Delta SAD\) nên ta có tỉ số \(\frac{{DM}}{{DE}} = \frac{2}{3}.\)

Khi đó, xét trong tam giác \(DEB\) có: \(\frac{{DM}}{{DE}} = \frac{{DG}}{{DB}} = \frac{2}{3} \Rightarrow MG{\rm{ // }}BE.\)

\(BE \subset \left( {SAB} \right)\) nên \(MG{\rm{ // }}\left( {SAB} \right)\).

Câu 3

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP