Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
A. \(y = {\tan ^2}x\).
Quảng cáo
Trả lời:
Một hàm số có đồ thị đối xứng qua gốc tọa độ khi nó là hàm số lẻ.
Xét hàm số \(y = f\left( x \right) = \cos 3x \cdot \sin x\).
Tập xác định của hàm số là \(D = \mathbb{R}\).
Do đó nếu \(x\) thuộc tập xác định \(D\) thì \( - x\) cũng thuộc tập xác định \(D\).
Ta có \(f\left( { - x} \right) = \cos \left( { - 3x} \right) \cdot \sin \left( { - x} \right) = \cos 3x \cdot \left( { - \sin x} \right) = - \cos 3x \cdot \sin x = - f\left( x \right),\,\,\forall x \in D\).
Vậy hàm số \(y = \cos 3x \cdot \sin x\) là hàm số lẻ nên đồ thị của nó đối xứng qua gốc tọa độ. Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)
Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.
Lời giải

a) Xét hai mặt phẳng \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\) có
\(M\) là điểm chung, \(BC{\rm{ // }}AD,\) \(BC \subset \left( {MBC} \right),\) \(AD \subset \left( {SAD} \right).\)
Vậy giao tuyến của \(\left( {MBC} \right)\) và \(\left( {SAD} \right)\) là đường thẳng \(Mx\) song song với \(BC\) và \(AD.\)
b) Do \(BC{\rm{ // }}AD\) nên \(\Delta GBC\) và \(\Delta GDA\) đồng dạng (góc – góc).
Suy ra \(\frac{{DG}}{{GB}} = \frac{{AD}}{{BC}} = \frac{2}{1} \Rightarrow \frac{{DG}}{{DB}} = \frac{2}{3}.\)
Do \(DE\) là trung tuyến của \(\Delta SAD\) và \(M\) là trọng tâm \(\Delta SAD\) nên ta có tỉ số \(\frac{{DM}}{{DE}} = \frac{2}{3}.\)
Khi đó, xét trong tam giác \(DEB\) có: \(\frac{{DM}}{{DE}} = \frac{{DG}}{{DB}} = \frac{2}{3} \Rightarrow MG{\rm{ // }}BE.\)
Mà \(BE \subset \left( {SAB} \right)\) nên \(MG{\rm{ // }}\left( {SAB} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.