Câu hỏi:

20/10/2025 290 Lưu

Một thợ thủ công muốn vẽ trang trí một tấm bìa hình vuông có độ dài cạnh bằng 4 mét. Người thợ thủ công quyết định vẽ các hình vuông lên tấm bìa bằng cách: hình vuông mới có các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ bên dưới). Giả sử quá trình vẽ và tô theo quy luật đó được lặp lại vô hạn lần. Tổng diện tích mà người thợ thủ công đó tô được là bao nhiêu mét vuông?

Một thợ thủ công muốn vẽ trang trí một tấm bìa hình vuông có độ dài cạnh bằng 4 mét.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({u_n},n \ge 1\)là phần diện tích được tô ở lần vẽ thứ n.

Ta có \({u_1} = \frac{1}{4}{.4^2}\); \({u_2} = \frac{1}{4}{\left( {2\sqrt 2 } \right)^2} = \frac{1}{2}.\frac{1}{4}{.4^2} = \frac{1}{2}{u_1}\); \({u_3} = \frac{1}{4}{.2^2} = {\left( {\frac{1}{2}} \right)^2}.\frac{1}{4}{.4^2} = {\left( {\frac{1}{2}} \right)^2}.{u_1}\); …

Khi đó dãy \({u_1};{u_2};...\) lập thành một cấp số nhân lùi vô hạn với \({u_1} = \frac{1}{4}{.4^2}\)\(q = \frac{1}{2}\).

Khi đó \(S = {u_1} + {u_2} + {u_3} + ... = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{1}{4}{{.4}^2}}}{{1 - \frac{1}{2}}} = \frac{1}{2}{.4^2} = 8\) (m2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Anh Minh muốn làm kệ để rubic có dạng như hình, nên đã thiết kế bằng việc tạo ra một hình chóp tam giác sau đó cắt phần đỉnh như hình vẽ. (ảnh 2)

Trong \(\left( {SAB} \right)\) qua \(M\) kẻ \(MN//AB\).

Trong \(\left( {SAC} \right)\) kẻ \(MP//AC\).

Khi đó \(\left( {MNP} \right)//\left( {ABC} \right) \Rightarrow \left( {MNP} \right) \equiv \left( P \right)\).

Thiết diện của \(\left( P \right)\) và hình chóp là tam giác \(MNP\) đồng dạng với tam giác \(ABC\) theo tỉ số \(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3}\)

\( \Rightarrow \frac{{{S_{MNP}}}}{{{S_{ABC}}}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9}\) \( \Rightarrow {S_{MNP}} = \frac{4}{9}{S_{ABC}}\).

Ta có \({S_{ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{1}{2}.5.5.\sin 30^\circ = \frac{{25}}{4}\).

Vậy \({S_{MNP}} = \frac{4}{9}.\frac{{25}}{4} = \frac{{25}}{9} \approx 2,78\).

Câu 2

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(N\) là trung điểm của \(SA\), \({G_1},{G_2}\) lần lượt là trọng tâm của \(\Delta SAB,\Delta SAD\). Khi đó \(\frac{{{G_1}{G_2}}}{{BD}} = \frac{a}{b}\) (\(\frac{a}{b}\) là phân số tối giản). Tính \(a - b\).

Lời giải

Cho hình chóp \(S.ABCD\) c (ảnh 1)

\({G_1},{G_2}\) lần lượt là trọng tâm của \(\Delta SAB,\Delta SAD\) nên \(\frac{{N{G_1}}}{{NB}} = \frac{{N{G_2}}}{{ND}} = \frac{1}{3} \Rightarrow {G_1}{G_2}//BD\).

Suy ra \(\frac{{{G_1}{G_2}}}{{BD}} = \frac{{N{G_1}}}{{NB}} = \frac{1}{3}\). Do đó \(a = 1;b = 3\). Vậy \(a - b = - 2\).

Trả lời: −2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3\).                        
B. \( + \infty \).           
C. \(4\).                                                                     
D. \(12\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP