Câu hỏi:

18/10/2025 363 Lưu

Cho hàm số \(f\left( x \right) = \tan 3x\).

a) Giá trị của hàm số tại \(x = \frac{\pi }{3}\) bằng 0.

b) Hàm số \(f\left( x \right)\) là hàm số lẻ.

c) Tập xác định của hàm số \(f\left( x \right)\)\(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi |k \in \mathbb{Z}} \right\}\).

d) Tổng các nghiệm của phương trình \(\tan 3x = 1\) trong khoảng \(\left( {0;\pi } \right)\) bằng \(\frac{{5\pi }}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(f\left( {\frac{\pi }{3}} \right) = \tan \left( {3.\frac{\pi }{3}} \right) = \tan \pi = 0\).

b) Ta có \(f\left( { - x} \right) = \tan \left( { - 3x} \right) = - \tan 3x = - f\left( x \right)\). Do đó hàm số \(f\left( x \right)\) là hàm số lẻ.

c) Điều kiện: \(\cos 3x \ne 0\)\( \Leftrightarrow 3x \ne \frac{\pi }{2} + k\pi \)\( \Leftrightarrow x \ne \frac{\pi }{6} + k\frac{\pi }{3},k \in \mathbb{Z}\).

Do đó \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\frac{\pi }{3},k \in \mathbb{Z}} \right\}\).

d) Có \(\tan 3x = 1\)\( \Leftrightarrow 3x = \frac{\pi }{4} + k\pi \)\( \Leftrightarrow x = \frac{\pi }{{12}} + k\frac{\pi }{3},k \in \mathbb{Z}\).

\(0 < x < \pi \) nên \(0 < \frac{\pi }{{12}} + k\frac{\pi }{3} < \pi \)\( \Leftrightarrow - \frac{1}{4} < k < \frac{{11}}{4}\).

\(k \in \mathbb{Z}\) nên \(k = 0;k = 1;k = 2\).

Từ đó ta có \(x = \frac{\pi }{{12}};x = \frac{{5\pi }}{{12}};x = \frac{{3\pi }}{4}\).

Do đó tổng các nghiệm là \(\frac{\pi }{{12}} + \frac{{5\pi }}{{12}} + \frac{{3\pi }}{4} = \frac{{5\pi }}{4}\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các mặt kệ sách đặt song song với mặt đất nên là hình ảnh của các mặt phẳng song song nhau, ta kí hiệu các mặt phẳng từ đáy kệ sách lên trên lần lượt là \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{P_3}} \right),\left( {{P_4}} \right)\).

Áp dụng định lí Thales cho ba mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{P_3}} \right)\) với hai cát tuyến \({d_1};{d_2}\) ta có \(\frac{{FG}}{{BC}} = \frac{{GH}}{{CD}} \Rightarrow \frac{{FG}}{{GH}} = \frac{{BC}}{{CD}}\).

\(BC = CD\) nên \(\frac{{FG}}{{GH}} = 1 \Rightarrow FG = GH\).

Tương tự áp dụng định lí Thales cho ba mặt phẳng \(\left( {{P_2}} \right),\left( {{P_3}} \right),\left( {{P_4}} \right)\) với hai cát tuyến \({d_1};{d_2}\) ta có \(EF = FG\).

Từ đó suy ra \(GH = FG = EF = 32\) cm.

Vậy \(HE = EF + FG + GH = 96\)cm.

Lời giải

\(a,b\) là hai góc nhọn nên \(\cos a > 0;\cos b > 0\).

\(\sin a = \frac{1}{3} \Rightarrow \cos a = \frac{{2\sqrt 2 }}{3}\); \(\sin b = \frac{1}{2} \Rightarrow \cos b = \frac{{\sqrt 3 }}{2}\).

\(\cos 2\left( {a + b} \right) = \cos \left( {2a + 2b} \right)\)\( = \cos 2a\cos 2b - \sin 2a\sin 2b\)

\( = \left( {2{{\cos }^2}a - 1} \right)\left( {2{{\cos }^2}b - 1} \right) - 4\sin a\cos a\sin b\cos b\)

\( = \left( {2.\frac{8}{9} - 1} \right)\left( {2.\frac{3}{4} - 1} \right) - 4.\frac{1}{3}.\frac{{2\sqrt 2 }}{3}.\frac{1}{2}.\frac{{\sqrt 3 }}{2}\)

\( = \frac{7}{{18}} - \frac{{2\sqrt 6 }}{9}\)\( = \frac{{7 - 4\sqrt 6 }}{{18}}\). Suy ra \(m = 4;n = 18\). Do đó \(m + 2n = 4 + 2.18 = 40\).

Trả lời: 40.

Câu 3

A. \({u_n} = 2n + 1\).     

B. \({u_n} = {n^2}\).  
C. \({u_n} = \frac{7}{{3n}}\).                                                  
D. \({u_n} = {3^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Song song.              
B. Chéo nhau.              
C. Cắt nhau.                                                                    
D. Trùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(5\).                        
B. \(4\).                        
C. \(3\).                                                                     
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP