Phần III. Câu trắc nghiệm trả lời ngắn. Học sinh trả lời từ câu 1 đến câu 6.
Cho góc \[\alpha \] thỏa mãn \[\frac{\pi }{2} < \alpha < \pi \] và \[\sin \alpha = \frac{2}{3}\].
Tính \[P = \frac{{1 + \sin 2\alpha + \cos 2\alpha }}{{\sin \alpha + \cos \alpha }}.\] (Kết quả làm tròn đến hàng phần mười).
Phần III. Câu trắc nghiệm trả lời ngắn. Học sinh trả lời từ câu 1 đến câu 6.
Cho góc \[\alpha \] thỏa mãn \[\frac{\pi }{2} < \alpha < \pi \] và \[\sin \alpha = \frac{2}{3}\].
Tính \[P = \frac{{1 + \sin 2\alpha + \cos 2\alpha }}{{\sin \alpha + \cos \alpha }}.\] (Kết quả làm tròn đến hàng phần mười).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: −1,5
Ta có: \[\sin \alpha = \frac{2}{3}\] và \[\frac{\pi }{2} < \alpha < \pi \] do đó \[\alpha \] thuộc góc phần tư thứ hai.
Suy ra \[\cos \alpha < 0\] và \[\cos \alpha = - \frac{{\sqrt 5 }}{3}\].
Ta có: \[P = \frac{{1 + \sin 2\alpha + \cos 2\alpha }}{{\sin \alpha + \cos \alpha }}\]
\[P = \frac{{1 + 2\sin \alpha \cos \alpha + {{\cos }^2}\alpha - {{\sin }^2}\alpha }}{{\sin \alpha + \cos \alpha }}\]
\[P = \frac{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2} + \left( {\cos \alpha - \sin \alpha } \right)\left( {\cos \alpha + \sin \alpha } \right)}}{{\sin \alpha + \cos \alpha }}\]
\[P = \frac{{\left( {\sin \alpha + \cos \alpha } \right)\left( {\cos \alpha + \sin \alpha + \cos \alpha - \sin \alpha } \right)}}{{\sin \alpha + \cos \alpha }}\]
\[P = 2\cos \alpha = - \frac{{2\sqrt 5 }}{3} \approx - 1,5.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
|
Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAC} \right) \cap \left( {SBD} \right)\\O \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right.\] \[ \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\]. Vậy giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là \[SO.\]
|
![]() |
Lời giải
Hướng dẫn giải
|
a) S |
b) S |
c) Đ |
d) Đ |
Ta có: \[\sin 2x = - \frac{1}{2}\] \[ \Leftrightarrow \sin 2x = \sin \left( { - \frac{\pi }{6}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}2x = - \frac{\pi }{6} + k2\pi \\2x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k\pi \\x = \frac{{7\pi }}{{12}} + k\pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
Xét trong khoảng \[\left( {0;\pi } \right)\] ta có:
\[\left[ \begin{array}{l}0 < - \frac{\pi }{{12}} + k\pi < \pi \\0 < \frac{{7\pi }}{{12}} + k\pi < \pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]\[ \Leftrightarrow \left[ \begin{array}{l}k = 1\\k = 0\end{array} \right.{\rm{ }}\]\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11\pi }}{{12}}\\x = \frac{{7\pi }}{{12}}\end{array} \right.{\rm{ }}\].
Trong khoảng \[\left( {0;\pi } \right)\] phương trình có nghiệm lớn nhất bằng \[\frac{{11\pi }}{{12}}\].
Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\pi } \right)\] bằng \[\frac{{11\pi }}{{12}} + \frac{{7\pi }}{{12}} = \frac{{3\pi }}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
