Cho hình chóp \[S.ABCD\] có đáy là tứ giác \[ABCD\] có các cặp cạnh đối không song song. Giả sử \[AC \cap BD = O\] và \[AD \cap BC = I\]. Giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
|
Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAC} \right) \cap \left( {SBD} \right)\\O \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right.\] \[ \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\]. Vậy giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là \[SO.\]
|
![]() |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) S |
b) S |
c) Đ |
d) Đ |
Ta có: \[\sin 2x = - \frac{1}{2}\] \[ \Leftrightarrow \sin 2x = \sin \left( { - \frac{\pi }{6}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}2x = - \frac{\pi }{6} + k2\pi \\2x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k\pi \\x = \frac{{7\pi }}{{12}} + k\pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
Xét trong khoảng \[\left( {0;\pi } \right)\] ta có:
\[\left[ \begin{array}{l}0 < - \frac{\pi }{{12}} + k\pi < \pi \\0 < \frac{{7\pi }}{{12}} + k\pi < \pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]\[ \Leftrightarrow \left[ \begin{array}{l}k = 1\\k = 0\end{array} \right.{\rm{ }}\]\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11\pi }}{{12}}\\x = \frac{{7\pi }}{{12}}\end{array} \right.{\rm{ }}\].
Trong khoảng \[\left( {0;\pi } \right)\] phương trình có nghiệm lớn nhất bằng \[\frac{{11\pi }}{{12}}\].
Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\pi } \right)\] bằng \[\frac{{11\pi }}{{12}} + \frac{{7\pi }}{{12}} = \frac{{3\pi }}{2}\].
Lời giải
Hướng dẫn giải
Đáp án đúng là: 0,8
![Cho hình chóp \[S.ABCD\], đáy \[ABCD\] là hình th (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/15-1760797726.png)
Trong mặt phẳng \[\left( {SCD} \right)\], gọi \[F = KN \cap SD\].
Trong mặt phẳng \[\left( {SAB} \right)\], gọi \[E = KM \cap SA\].
Lúc này, mặt phẳng \[\left( {KMN} \right)\] cắt hình chóp theo thiết diện là tứ giác \[MNFE\].
Ta có: \[AD = 2BC\] thì \[BC\] là đường trung bình của tam giác \[KAD.\]
Suy ra \[M\] là trọng tâm của tam giác \[SAK\] và \[E\] là trung điểm của \[SA.\]
Tương tự \[EF\] là đường trung bình của tam giác \[SAD\] \[ \Rightarrow EF = \frac{1}{2}AD.\]
Mặt khác theo giả thiết, ta có \[SM = 2MB;SN = 2NC\] \[ \Rightarrow MN = \frac{2}{3}BC = \frac{1}{3}AD.\]
Vì \[\frac{{MN}}{{EF}} = \frac{2}{3}\] nên \[\frac{{{S_{KMN}}}}{{{S_{KFE}}}} = {\left( {\frac{2}{3}} \right)^2}\]\[ \Leftrightarrow {S_{KMN}} = \frac{4}{9}{S_{KEF}};{S_{MNFE}} = \frac{5}{9}{S_{KEF}}\].
Vậy \[\frac{{{S_{KMN}}}}{{{S_{MNFE}}}} = \frac{4}{5} = 0,8.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
