Câu hỏi:

19/10/2025 24 Lưu

Một cơ sở khoan giếng có đơn giá như sau: giá của mét khoan đầu tiên là \(60000\) đồng và kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm \(2,5\% \) so với giá của mét khoan ngay trước đó. Số tiền mà chủ nhà phải trả cho cơ sở khoan giếng để khoan được \(55\left( {\rm{m}} \right)\)giếng là bao nhiêu? (đơn vị: nghìn đồng) (làm tròn đến hàng đơn vị).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 6933

Đặt \({u_1}\) là giá của mét khoan đầu tiên thì \[{u_1} = 60\,000\] đồng.

Kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm \(2,5\% \) so với giá của mét khoan ngay trước đó.

Suy ra \({u_2} = {u_1} + {u_1}.2,5\% = {u_1}(1 + 0,025) = 1,025{u_1}\).

Tương tự

    \({u_3} = {u_2} + {u_2}.2,5\% = {u_2}(1 + 0,025) = 1,025{u_2}\).

    …………………………………………….

Vậy các giá trị \({u_1},\,{u_2},...,\,{u_{55}}\) lập thành một cấp số nhân có số hạng đầu \({u_1} = 60\,000\) và công bội

\(q = 1,025\).

Gọi \(T\) là tổng số tiền mà chủ nhà phải thanh toán khi khoan \(55\left( {\rm{m}} \right)\) giếng, ta có:

\(T = {S_{55}} = {u_1} + {u_2} + ... + {u_{55}} = 60{\rm{ }}000.\frac{{{{\left( {1,025} \right)}^{55}} - 1}}{{1,025 - 1}} \approx 6933055\) (đồng)\( \approx 6933\)nghìn đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 12,6

Chọn hệ trục tọa độ như hình vẽ

Một cái cổng vào một trung tâm thương mại có hình dạng là một phần của đồ thị hàm số \(y = 2\cos \left( { (ảnh 1)

\[AD = 3 \Leftrightarrow 2\cos \frac{x}{2} + 2 = 3 \Leftrightarrow \cos \frac{x}{2} = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k4\pi \\x = \frac{{ - 2\pi }}{3} + k4\pi \end{array} \right.(k \in \mathbb{Z})\]

Chọn :\[A\left( {\frac{{ - 2\pi }}{3};3} \right);B\left( {\frac{{2\pi }}{3};3} \right);C\left( {\frac{{2\pi }}{3};0} \right);D\left( {\frac{{ - 2\pi }}{3};0} \right)\]

 \[AB = \frac{{4\pi }}{3};AD = 3 \Rightarrow {S_{ABCD}} = 4\pi = 4.3,14 = 12,56 \approx 12,6({{\rm{m}}^{\rm{2}}}){\rm{ }}\].

Lời giải

a) Đ, b) Đ, c) Đ, d) S

Cho hình chóp \(S.ABCD\) có đáy là (ảnh 1)

a) Ta có \(OM\not \subset \left( {SAB} \right)\)\(OM//SA \subset \left( {SAB} \right)\). Vậy \(OM//\left( {SAB} \right)\).

b) Ta có \(\left( {SAC} \right)\)\(\left( {SBD} \right)\) có S chung.

Lại có \(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right) \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).

Vậy \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).

c) Trong mặt phẳng \(\left( {SAC} \right)\): \(\left\{ I \right\} = AM \cap SO\)\(SO \subset \left( {SBD} \right)\).

Vậy \(AM \cap \left( {SBD} \right) = \left\{ I \right\}\).

d) Xét \(\Delta SAC\)\(AM,SO\) là hai đường trung tuyến nên \(I\) là trọng tâm \(\Delta SAC\).

Suy ra theo tính chất trọng tâm ta có \(AI = 2IM\).

Câu 3

A. \(EF//CD\).                                         
B. \(CE//AD\).    
C. \(EH//AD\).                                        
D. \(GF//BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP