Câu hỏi:

19/10/2025 148 Lưu

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \({G_1},{G_2}\) là trọng tâm của các tam giác\(A'BD,B'D'C\). Khi đó:

a) \(A'D'CB\) là hình bình hành.

b)\(\left( {A'BD} \right)//\left( {B'D'C} \right)\).

c) \({G_1},{G_2}\) cùng thuộc \(AC'\).

d) \({G_1}{G_2} = \frac{2}{3}AC'\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \ (ảnh 1)

a) Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(\left\{ {\begin{array}{*{20}{l}}{A'D'//BC}\\{A'D' = BC}\end{array} \Rightarrow A'D'CB} \right.\) là hình bình hành.

b) \(A'D'CB\) là hình bình hành nên \(A'B//CD' \Rightarrow A'B//\left( {B'D'C} \right)\). (1)

Tương tự, ta có: \(\left\{ {\begin{array}{*{20}{l}}{A'B'//CD}\\{A'B' = CD}\end{array} \Rightarrow A'B'CD} \right.\) là hình bình hành.

Suy ra \(A'D//B'C \Rightarrow A'D//\left( {B'D'C} \right)\).(2)

Từ (1) và \((2)\) suy ra \(\left( {A'BD} \right)//\left( {B'D'C} \right)\).

c) Gọi \(O,O',I\) theo thứ tự là tâm của các hình bình hành \(ABCD,A'B'C'D'\), \(ACC'A'\).

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \ (ảnh 2)

\({G_1}\) là trọng tâm tam giác \(AB'D\) nên \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) \( \Rightarrow {G_1}\) là trọng tâm tam giác \(A'AC\), suy ra \({G_1} = AI \cap A'O\). (3)

Tương tự, \({G_2}\) là trọng tâm tam giác \(B'D'C\) nên \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\).

\( \Rightarrow {G_2}\) là trọng tâm tam giác \(A'C'C\), suy ra \({G_2} = C'I \cap CO'\). (4)

Từ (3) và (4) suy ra \({G_1},{G_2}\) cùng thuộc \(AC'\).

d) Chứng minh \(A{G_1} = {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\):

Ta có: \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow \frac{{A{G_1}}}{{AC'}} = \frac{1}{3};\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow \frac{{C'{G_2}}}{{AC'}} = \frac{1}{3}\).

Do vậy \(A{G_1} \buildrel\textstyle.\over= {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\).

Vậy \({G_1},{G_2}\) cùng thuộc \(AC'\), đồng thời chia \(AC'\) thành ba phần bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Gọi \(E,F,G\) lần lượt là trung điểm của cạnh \(SA,AB,CD\). Gọi \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\). Tính tỉ số \(\frac{{GP}}{{PE}}\). (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\):

Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).

Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).

Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).

Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).

Mặt khác \(P\) là trọng tâm tam giác \(SAG\).

Suy ra \(\frac{{GP}}{{PE}} = 2\).

Lời giải

Trả lời: 13,7

Nếu cạnh hình vuông ban đầu là \(x\) thì theo định lí Pythagore, ta có cạnh hình vuông thứ hai là \(\sqrt {{{\left( {\frac{x}{2}} \right)}^2} + {{\left( {\frac{x}{2}} \right)}^2}} = \frac{{x\sqrt 2 }}{2}.(*)\)

Gọi cạnh hình vuông \(ABCD\)\({u_1} = 1\), từ \({\rm{(}}*{\rm{)}}\) ta có cạnh hình vuông thứ hai là \({u_2} = \frac{{\sqrt 2 }}{2}\), cạnh hình vuông thứ ba là \({u_3} = \frac{1}{2}\), cạnh hình vuông thứ tư là \({u_4} = \frac{{\sqrt 2 }}{4}, \ldots \)

Xét tổng chu vi dãy các hình vuông là:

\(S = 4{u_1} + 4{u_2} + 4{u_3} + \ldots = 4\left( {1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots } \right).\)

Dễ thấy \(1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots \) là tổng của cấp số nhân lùi vô hạn có số hạng đầu bằng 1, công bội bằng \(\frac{{\sqrt 2 }}{2}\).

Vậy ta có: \(S = 4 \cdot \frac{{{u_1}}}{{1 - q}} = 4 \cdot \frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = 8 + 4\sqrt 2 \approx 13,7\).